DOI QR코드

DOI QR Code

On dynamic response and economic of sinusoidal porous laminated nanocomposite beams using numerical method

  • Guixiao Xu (School of Digital Economy and information management, Chongqing College of Mobile Communication) ;
  • F. Ming (Department of Mechanical Engineering, University of Hong Kong)
  • Received : 2023.08.10
  • Accepted : 2023.10.31
  • Published : 2023.11.10

Abstract

Dynamic response and economic of a laminated porous concrete beam reinforced by nanoparticles subjected to harmonic transverse dynamic load is investigated considering structural damping. The effective nanocomposite properties are evaluated on the basis of Mori-Tanaka model. The concrete beam is modeled by the sinusoidal shear deformation theory (SSDT). Utilizing nonlinear strains-deflection, energy relations and Hamilton's principal, the governing final equations of the concrete laminated beam are calculated. Utilizing differential quadrature method (DQM) as well as Newmark method, the dynamic displacement of the concrete laminated beam is discussed. The influences of porosity parameter, nanoparticles volume percent, agglomeration of nanoparticles, boundary condition, geometrical parameters of the concrete beam and harmonic transverse dynamic load are studied on the dynamic displacement of the laminated structure. Results indicated that enhancing the nanoparticles volume percent leads to decrease in the dynamic displacement about 63%. In addition, with considering porosity of the concrete, the dynamic displacement enhances about 2.8 time.

Keywords

References

  1. Aksoylu, C., Ozkilic, Y.O. and Arslan M.H. (2020a) "Damages on prefabricated concrete dapped-end purlins due to snow loads and a novel reinforcement detail", Eng. Struct. 225, 111225. https://doi.org/10.1016/j.engstruct.2020.111225.
  2. Aksoylu, C., Ozkilic, Y.O., Yazman, S., Gemi, L. and Arslan M.H. (2021), "Inceltilmis Uclu Onuretimli Asik Kirislerinin Yuk Tasima Kapasitelerinin Deneysel ve Numerik Olarak Irdelenmesi ve Cozum Onerileri", Teknik Dergi, 32(3), 10823-10858. https://doi.org/10.18400/tekderg.667066. (In Turkish).
  3. Aksoylu, C., Yazman, S., Ozkilic, Y.O., Gemi, L. and Arslan M.H. (2020b), "Experimental analysis of reinforced concrete shear deficient beams with circular web openings strengthened by CFRP composite", Compos. Struct., 249, 112561. https://doi.org/10.1016/j.compstruct.2020.112561.
  4. Al-Furjan, M.S.H., Farrokhian, A., Mahmoud, S.R., Kolahchi, R. (2021), "Dynamic deflection and contact force histories of graphene platelets reinforced conical shell integrated with magnetostrictive layers subjected to low-velocity impact", Thin-Wall. Struct., 163, 107706. https://doi.org/10.1016/j.tws.2021.107706.
  5. Alijani, M. and Rabani Bidgoli, M. (2018), "Agglomerated SiO2 nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis", Adv. Concr. Constr., 6(6), 585-610. http://dx.doi.org/10.12989/acc.2018.6.6.585.
  6. Alipour, M.M. and Shariyat, M. (2019), "Nonlocal zigzag analytical solution for Laplacian hygrothermal stress analysis of annular sandwich macro/nanoplates with poor adhesions and 2D-FGM porous cores", Arch. Civ. Mech. Eng., 19(4), 1211-1234. https://doi.org/10.1016/j.acme.2019.06.008.
  7. Amoli, A., Kolahchi, R. and Rabani Bidgoli, M. (2018), "Seismic analysis of AL2O3 nanoparticles-reinforced concrete plates based on sinusoidal shear deformation theory", Earthq. Struct. 15(3), 285-294. https://doi.org/10.12989/eas.2018.15.3.285.
  8. Anirudh, B., Ben Zineb, T., Polit, O., Ganapathi, M. and Prateek, G. (2020), "Nonlinear bending of porous curved beams reinforced by functionally graded nanocomposite grapheme platelets applying an efficient shear flexible finite element approach", Int. J. Non-Linear. Mech., 119, 103346. https://doi.org/10.1016/j.ijnonlinmec.2019.103346.
  9. Azree, M. and Wang, Y.C. (2012), "Mechanical properties of foamed concrete exposed to high temperatures", Constr. Build. Mater., 26(1), 638-654. https://doi.org/10.1016/j.conbuildmat.2011.06.067.
  10. Bai, Z., Liu, Y., Yang, J. and He, S. (2019), "Exploring the dynamic response and energy dissipation capacity of functionally graded EPS concrete", Constr. Build. Mater. 227, 116574. https://doi.org/10.1016/j.conbuildmat.2019.07.300.
  11. Bakhshande, Amnieh. H., Zamzam, M.S. and Kolahchi, R. (2018), "Dynamic analysis of non-homogeneous concrete blocks mixed by SiO2 nanoparticles subjected to blast load experimentally and theoretically", Constr. Build. Mater., 174, 633-644. https://doi.org/10.1016/j.conbuildmat.2018.04.140.
  12. Chan, R., Liu, X. and Galobardes, I. (2020), "Parametric study of functionally graded concretes incorporating steel fibres and recycled aggregates", Constr. Build. Mater., 242, 118186. https://doi.org/10.1016/j.conbuildmat.2020.118186.
  13. Craveiro, F., Nazarian, S., Bartolo, H., Bartolo, H., Bartolo, P.J. and Duarte, J.P. (2020), "An automated system for 3D printing functionally graded concrete-based materials", Addit. Manuf., 33, 101146. https://doi.org/10.1016/j.addma.2020.101146.
  14. Fouaidi, M., Jamal, M. and Belouaggadia, N. (2020), "Nonlinear bending analysis of functionally graded porous beams using the multiquadric radial basis functions and a Taylor series-based continuation procedure", Compos. Struct. 252, 112593. https://doi.org/10.1016/j.compstruct.2020.112593.
  15. Fouaidi, M., Jamal, M., Zaite, A. and Belouaggadia, N. (2021), "Bending analysis of functionally graded graphene oxide powder-reinforced composite beams using a meshfree method", Aeros. Sci. Technol., 10, 106479. https://doi.org/10.1016/j.ast.2020.106479.
  16. Gemi, L., Aksoylu, C., Yazman, S., Ozkilic, Y.O. and Arslan M.H. (2019) "Experimental investigation of shear capacity and damage analysis of thinned end prefabricated concrete purlins strengthened by CFRP composite", Compos. Struct., 29, 111399. https://doi.org/10.1016/j.compstruct.2019.111399.
  17. Gio, H., Li, M., Zur, K.K., Yuan, J. and Wu, X. (2023), "Flutter of carbon-based nanohybrid composite panels", Thin Wall. Struct., 188, 110828, https://doi.org/10.1016/j.tws.2023.110828.
  18. Hajmohammad, M.H., Sharif Zarei, M., Nouri, A. and Kolahchi, R. (2017), "Dynamic buckling of sensor/functionally graded-carbon nanotube-reinforced laminated plates/actuator based on sinusoidal-visco-piezoelasticity theories", J. Sandw. Struct. Mater., https://doi.org/10.1177/1099636217720373.
  19. Harith, I.K. (2018), "Study on polyurethane foamed concrete for use in structural applications", Case Stud. Constr. Mater., 8, 79-86. https://doi.org/10.1016/j.cscm.2017.11.005.
  20. Heidarzadeh, A., Kolahchi, R. and Rabani Bidgoli, M. (2018), "Concrete Pipes Reinforced with AL2O3 Nanoparticles Considering Agglomeration: Magneto-Thermo-Mechanical Stress Analysis", Int. J. Civ. Eng., 16(3), 315-322. https://doi.org/10.1007/s40999-016-0130-2.
  21. Jassas, M.R., Rabani Bidgoli, M. and Kolahchi, R. (2019), "Forced vibration analysis of concrete slabs reinforced by agglomerated SiO2 nanoparticles based on numerical methods", Constr. Build. Mater., 211, 796-806. https://doi.org/10.1016/j.conbuildmat.2019.03.263.
  22. Kamarian, S., Shakeri, M., Yas, M.H., Bodaghi, M. and Pourasghar, A. (2015), "Free vibration analysis of functionally graded nanocomposite sandwich beams resting on Pasternak foundation by considering the agglomeration effect of CNTs", J. Sandw. Struct. Mater., 17, 632-665. https://doi.org/10.1177/1099636215590280.
  23. Karegar, M., Rabani Bidgoli, M. and Mazaheri, H. (2021), "Smart control and seismic analysis of concrete frames with piezoelectric layer based on mathematical modelling and numerical method", Structures. 32, 1171-1179. https://doi.org/10.1016/j.istruc.2021.03.076
  24. Kargar, M. and Rabani Bidgoli, M. (2018), "Mathematical modeling of smart nanoparticles-reinforced concrete foundations: Vibration analysis", Steel Compos. Struct., 27(4), 465-477. https://doi.org/10.12989/scs.2018.27.4.465.
  25. Ke, L.L., Yang, J. and Kitipornchai, S. (2013), "Dynamic stability of functionally graded carbon nanotube-reinforced composite beams", Mech. Adv. Mater. Struct., 20, 28-37. https://doi.org/10.1080/15376494.2011.581412.
  26. Keshtegar, B., Farrokhian, A., Kolahchi, R. and Trung, N.T. (2020b), "Dynamic stability response of truncated nanocomposite conical shell with magnetostrictive face sheets utilizing higher order theory of sandwich panels", Eur. J. Mech. A/Solids. 82, 104010.
  27. Keshtegar, B., Motezaker, M., Kolahchi,R. and Trung, N.T. (2020a), "Wave propagation and vibration responses in porous smart nanocomposite sandwich beam resting on Kerr foundation considering structural damping", Thin-Wall. Struct., 154, 106820.
  28. Madenci, E. and Ozkilic, Y.O. (2021) "Free vibration analysis of open-cell FG porous beams: analytical, numerical and ANN approaches", Steel Compos. Struct., 40(2), 157-173. https://doi.org/10.12989/scs.2021.40.2.157.
  29. Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020a) "Theoretical investigation on static analysis of pultruded GFRP composite beams", J. Eng. Sci. 8(3), 483-490. https://doi.org/10.21541/apjes.734770.
  30. Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020b) "Buckling and free vibration analyses of pultruded GFRP laminated composites: Experimental, numerical and analytical investigations", Compos. Struct., 254, 112806. https://doi.org/10.1016/j.compstruct.2020.112806.
  31. Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020c) "Experimental and theoretical investigation on flexure performance of pultruded GFRP composite beams with damage analyses", Compos. Struct., 242, 112162. https://doi.org/10.1016/j.compstruct.2020.112162.
  32. Mahjoobi, M. and Rabani Bidgoli, M. (2019), "Vibration analysis of concrete foundation armed by silica nanoparticles based on numerical methods", Struct. Eng. Mech., 69(5), 547-555. http://dx.doi.org/10.12989/sem.2019.69.5.547.
  33. Metsebo, J., Nana Nbendjo, B.R. and Woafo, P. (2016), "Dynamic responses of a hinged-hinged Timoshenko beam with or without a damage subject to blast loading", Mech. Res. Commun., 71, 38-43. https://doi.org/10.1016/j.mechrescom.2015.10.001
  34. Mohammadi, H. (2021), "Isogeometric Free and Forced Vibration Analyses of FG-CNTs Plates based on a Logarithmic Higher-Order Shear Deformation Theory", Mech. Adv. Compos. Struct., 8, 435-453, https://doi.org/10.22075/macs.2021.23147.1334.
  35. Mohammadi, H. (2022), "Isogeometric thermal buckling analysis of GPL reinforced composite laminated folded plates", Eng. Struct., 255, 113905, https://doi.org/10.1016/j.engstruct.2022.113905.
  36. Mohammadi, H. (2023a), "On the mechanical buckling analysis of FG-GRC laminated plates with temperature-dependent material properties using isogeometric approach", Int. J. Struct. Stab. Dyn., 23, 2350092, https://doi.org/10.1142/S021945542350092X.
  37. Mohammadi, H. (2023b), "Isogeometric approach for thermal buckling analysis of FG graphene platelet reinforced composite trapezoidally corrugated laminated panels", Eng. Anal. Bound. Elem., 151, 244-254, https://doi.org/10.1016/j.enganabound.2023.03.007.
  38. Mohammadi, H. (2023b), "Isogeometric free vibration analysis of trapezoidally corrugated FG-GRC laminated panels using higher-order shear deformation theory", Structures, 48, 642-656, https://doi.org/10.1016/j.istruc.2023.01.001.
  39. Mohammadi, H., Shojaee, M. and Kiani, Y. (2023), "A simplified isogeometric approach for vibrational analysis of nanocomposite panels with a free-form curve", Thin Wall. Struct., 183, 110426, https://doi.org/10.1016/j.tws.2022.110426.
  40. Motezaker, M., Kolahchi, R., Kumar Rajak, D. and Mahmoud, S. R. (2021), "Influences of fiber reinforced polymer layer on the dynamic deflection of concrete pipes containing nanoparticle subjected to earthquake load", Polym. Compos., https://doi.org/10.1002/pc.26118.
  41. Nuttawit, W. and Varidddhi, U. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Comput. Mater. Sci., 71, 201-208, https://doi.org/10.1016/j.commatsci.2013.01.028.
  42. Ozkilic, Y.O., Aksoylu, C. and Arslan M.H. (2021a) "Numerical evaluation of effects of shear span, stirrup spacing and angle of stirrup on reinforced concrete beam behaviour", Struct. Eng. Mech., 79(3), 309-326. https://doi.org/10.12989/sem.2021.79.3.309.
  43. Ozkilic, Y.O., Aksoylu, C. and Arslan M.H. (2021b) "Experimental and numerical investigations of steel fiber reinforced concrete dapped-end purlins", J. Build. Eng., 36, 102119. https://doi.org/10.1016/j.jobe.2020.102119.
  44. Ozkilic, Y.O., Yazman, S., Aksoylu, C., Arslan M.H. and Gemi, L. (2021c) "Numerical investigation of the parameters influencing the behavior of dapped end prefabricated concrete purlins with and without CFRP strengthening", Constr. Build. Mater.m 275, 122173. https://doi.org/10.1016/j.conbuildmat.2020.122173.
  45. Penna, R., Feo, L. and Lovisi, G. (2021), "Hygro-thermal bending behavior of porous FG nano-beams via local/nonlocal strain and stress gradient theories of elasticity", Compos. Struct., 263, 113627. https://doi.org/10.1016/j.compstruct.2021.113627.
  46. Pietras, D. and Sadowski, T. (2019), "A numerical model for description of mechanical behaviour of a Functionally Graded Autoclaved Aerated Concrete created on the basis of experimental results for homogenous Autoclaved Aerated Concretes with different porosities", Constr. Build. Mater., 204, 839-848. https://doi.org/10.1016/j.conbuildmat.2019.01.189.
  47. Polit, O., Anant, C., Anirudh, B. and Ganapathi, M. (2019), "Functionally graded graphene reinforced porous nanocomposite curved beams: Bending and elastic stability using a higher-order model with thickness stretch effect", Compos. B: Eng., 166, 310-327. https://doi.org/10.1016/j.compositesb.2018.11.074.
  48. Sahoo, S.K., Mohapatra, B.G., Patro, S.K. and Acharya, P.K. (2021), "Evaluation of graded layer in ground granulated blast furnace slag based layered concrete", Constr. Build. Mater., 276, 122218. https://doi.org/10.1016/j.conbuildmat.2020.122218.
  49. Sang, G., Zhu, Y., Yang, G. and Zhang, H. (2015), "Preparation and characterization of high porosity cement-based foam material", Constr. Build. Mater., 91, 133-137. https://doi.org/10.1016/j.conbuildmat.2015.05.032.
  50. Sayyad, A.S. and Ghugal, Y.M. (2018), "An inverse hyperbolic theory for FG beams resting on Winkler-Pasternak elastic foundation", Adv. Aircr. Spac. Sci., 5, 671-689. https://doi.org/10.12989/aas.2018.5.6.671.
  51. Shagholani Loor, A., Rabani Bidgoli, M. and Mazaheri, H. (2020), "On the use of differential quadrature-three-term conjugate finite-step length methods for reliability analysis of steel fiber-reinforced sinusoidal rupture beams", Eng. Comput., https://doi.org/10.1007/s00366-020-01201-w.
  52. Sharifi, P., Shojaee, M. and Salighe, S. (2023), "Vibration of rotating porous nanocomposite eccentric semi-annular and annular plates in uniform thermal environment using TDQM", Arch. Appl. Mech., 93, 1579-1604. https://doi.org/10.1007/s00419-022-02347-3.
  53. Shi, D.L. and Feng, X.Q . (2004), "The Effect ofNanotube Waviness and Agglomeration on the Elastic Property of Carbon Nanotube-Reinforced Composites". J. Eng. Mat.Tech ASME, 126, 250-270, https://doi.org/10.1115/1.1751182.
  54. Sridhar, R. and Prasad, D.R. (2019), "Damage assessment of functionally graded reinforced concrete beams using hybrid fiber engineered cementitious composites", Structures., 20, 832-847. https://doi.org/10.1016/j.istruc.2019.07.002.
  55. Taherifar, R., Zareei, S.A., Bidgoli, M.R. and Kolahchi, R. (2020), "Seismic analysis in pad concrete foundation reinforced by nanoparticles covered by smart layer utilizing plate higher order theory", Steel Compos. Struct. 37(1), 99-115. https://doi.org/10.12989/scs.2020.37.1.099.
  56. Thai, H.T. and Vo. T.P. (2012), "A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 54, 58066, https://doi.org/10.1016/j.ijengsci.2012.01.009.
  57. Viet, N.V. and Zaki, W. (2021), "Bending model for functionally graded porous shape memory alloy/poroelastic composite cantilever beams", Appl. Math. Model. 97, 398-417. https://doi.org/10.1016/j.apm.2021.03.058.
  58. Wang, Y. and wu, D. (2017), "Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory", Aerosp. Sci. Technol., 66, 83-91, https://doi.org/10.1016/j.ast.2017.03.003.
  59. Wang, Y. and Zhang, W. (2022), "On the thermal buckling and postbuckling responses of temperature-dependent graphene platelets reinforced porous nanocomposite beams", Compos. Struct., 296, 115880. https://doi.org/10.1016/j.compstruct.2022.115880.
  60. Wang, Y., Ma, H., Xie, K., Fu, T., Chen, J. and Liu, Y. (2022), "Nonlinear bending of a sandwich beam with metal foam and GPLRC face-sheets using Chebyshev-Ritz method: Effects of agglomeration and internal pore", Thin Wall. Struct., 181, 110035. https://doi.org/10.1016/j.tws.2022.110035.
  61. Wang, Y., Xie, K., Fu, T. and Shi, C. (2019), "Vibration response of a functionally graded graphene nanoplatelet reinforced composite beam under two successive moving masses", Compos. Struct., 209, 928-939, https://doi.org/10.1016/j.compstruct.2018.11.014.
  62. Wang, Y., Zhang, Zh., Chen, J. and Fu, T. (2022), "Low-velocity impact response of agglomerated FG-CNTRC beams with general boundary conditions using Gram-Schmidt-Ritz method", J. Braz. Soc. Mech. Sci. Eng., 44, 537. https://doi.org/10.1007/s40430-022-03843-x.
  63. Yas, M.H. and Heshmati, M. (2012), "Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load", Appl. Math. Model., 36, 1371-1394. https://doi.org/10.1016/j.apm.2011.08.037.
  64. Yas, M.H. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Pres. Vess. Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012.
  65. Zamani, A. and Rabani Bidgoli, M. (2017), "Vibration analysis of concrete foundations retrofit with NFRP layer resting on soil medium using sinusoidal shear deformation theory", Soil Dyn. Earthq. Eng. 103, 141-150. https://doi.org/10.1016/j.soildyn.2017.09.018.
  66. Zamanian, M., Kolahchi, R. and Rabani Bidgoli, M. (2017), "Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with SiO2 nanoparticles", Wind. Struct., 24(1), 43-57. https://doi.org/10.12989/was.2017.24.1.043.
  67. Zhang, W., Qin, Q., Li, K., Li, J. and Wang, Q. (2021), "Effect of stepwise gradient on dynamic failure of composite sandwich beams with metal foam core subject to low-velocity impact", Int. J. Solids. Struct., 228, 111125. https://doi.org/10.1016/j.ijsolstr.2021.111125.
  68. Zhang, W., Wang, C. and Wang, Y. (2023), "Thermo-mechanical analysis of porous functionally graded graphene reinforced cylindrical panels using an improved third order shear deformable model", Appl. Math. Model., 118, 453-473.https://doi.org/10.1016/j.apm.2023.01.026.
  69. Zhu, J., Fang, Zh., Liu, X., Zhang, J. and Kiani, Y. (2023), "Vibration characteristics of skew sandwich plates with functionally graded metal foam core", Structures, 55, 370-378.https://doi.org/10.1016/j.istruc.2023.06.039.
  70. Zur, K.K., Firouzi, N., Rabczuk, T. and Zhuang, X. (2023), "Large deformation of hyperelastic modified Timoshenko-Ehrenfest beams under different types of loads", Comput. Methods Appl. Mech. Eng., 416, 116368, https://doi.org/10.1016/j.cma.2023.116368.