DOI QR코드

DOI QR Code

Downward Influences of Sudden Stratospheric Warming (SSW) in GloSea6: 2018 SSW Case Study

GloSea6 모형에서의 성층권 돌연승온 하층 영향 분석: 2018년 성층권 돌연승온 사례

  • Dong-Chan Hong (School of Earth and Environmental Sciences, Seoul National University) ;
  • Hyeon-Seon Park (Department of Atmospheric Science, Kongju National University) ;
  • Seok-Woo Son (School of Earth and Environmental Sciences, Seoul National University) ;
  • Joowan Kim (Department of Atmospheric Science, Kongju National University) ;
  • Johan Lee (Climate Research Department, National Institute of Meteorological Sciences) ;
  • Yu-Kyung Hyun (Climate Research Department, National Institute of Meteorological Sciences)
  • 홍동찬 (서울대학교 지구환경과학부) ;
  • 박현선 (공주대학교 대기과학과) ;
  • 손석우 (서울대학교 지구환경과학부) ;
  • 김주완 (공주대학교 대기과학과) ;
  • 이조한 (국립기상과학원 기후연구부) ;
  • 현유경 (국립기상과학원 기후연구부)
  • Received : 2023.08.24
  • Accepted : 2023.10.10
  • Published : 2023.11.30

Abstract

This study investigates the downward influences of sudden stratospheric warming (SSW) in February 2018 using a subseasonal-to-seasonal forecast model, Global Seasonal forecasting system version 6 (GloSea6). To quantify the influences of SSW on the tropospheric prediction skills, free-evolving (FREE) forecasts are compared to stratospheric nudging (NUDGED) forecasts where zonal-mean flows in the stratosphere are relaxed to the observation. When the models are initialized on 8 February 2018, both FREE and NUDGED forecasts successfully predicted the SSW and its downward influences. However, FREE forecasts initialized on 25 January 2018 failed to predict the SSW and downward propagation of negative Northern Annular Mode (NAM). NUDGED forecasts with SSW nudging qualitatively well predicted the downward propagation of negative NAM. In quantity, NUDGED forecasts exhibit a higher mean squared skill score of 500 hPa geopotential height than FREE forecasts in late February and early March. The surface air temperature and precipitation are also better predicted. Cold and dry anomalies over the Eurasia are particularly well predicted in NUDGED compared to FREE forecasts. These results suggest that a successful prediction of SSW could improve the surface prediction skills on subseasonal-to-seasonal time scale.

Keywords

Acknowledgement

이 연구는 기상청 국립기상과학원 기후예측 현업시스템 운영 및 개발(KMA2018-00322)과 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행되었습니다(NRF-2020M1A5A1110579).

References

  1. Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581-584, doi:10.1126/science.1063315. 
  2. Baldwin, M. P., and D. W. J. Thompson, 2009: A critical comparison of stratosphere-troposphere coupling indices. Quart. J. Roy. Meteor. Soc., 135, 1661-1672, doi:10.1002/qj.479. 
  3. Baldwin, M. P., and Coauthors, 2021: Sudden stratospheric warmings. Rev. Geophys., 59, e2020RG000708, doi:10.1029/2020RG000708. 
  4. Butler, A. H., J. P. Sjoberg, D. J. Seidel, and K. H. Rosenlof, 2017: A sudden stratospheric warming compendium. Earth Syst. Sci. Data, 9, 63-76, doi:10.5194/essd-9-63-2017. 
  5. Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part 1: Climatology and modeling benchmarks. J. Climate, 20, 449-469, doi:10.1175/JCLI3996.1. 
  6. Domeisen, D. I. V., and Coauthors, 2020a: The role of the stratosphere in subseasonal to seasonal prediction: 1. Predictability of the stratosphere. J. Geophys. Res. Atmos., 125, e2019JD030920, doi:10.1029/2019JD030920. 
  7. Domeisen, D. I. V., and A. H. Butler, 2020b: Stratospheric drivers of extreme events at the Earth's surface. Commun. Earth Environ., 1, 59-66, doi:10.1038/s43247-020-00060-z. 
  8. Gang, D.-W., H.-O. Cho, S.-W. Son, J. Lee, Y.-K. Hyun, and K.-O. Boo, 2021: Evaluation of sea surface temperature prediction skill around the Korean peninsula in GloSea5 hindcast: Improvement with bias correction. Atmosphere, 31, 215-227, doi:10.14191/Atmos.2021.31.2.215. 
  9. Goddard, L., and Coauthors, 2013: A verification framework for interannual-to-decadal predictions experiments. Clim. Dyn., 40, 245-272, doi:10.1007/s00382-012-1481-2. 
  10. Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999-2049, doi:10.1002/qj.3803. 
  11. Hitchcock, P., and I. R. Simpson, 2014: The downward influence of stratospheric sudden warmings. J. Atmos. Sci., 71, 3856-3876, doi:10.1175/JAS-D-14-0012.1. 
  12. Hitchcock, P., and Coauthors, 2022: Stratospheric nudging and predictable surface impacts (SNAPSI): A protocol for investigating the role of stratospheric polar vortex disturbances in subseasonal to seasonal forecasts. Geosci. Model Dev., 15, 5073-5092, doi:10.5194/gmd-15-5073-2022. 
  13. Huang, J., P. Hitchcock, W. Tian, and J. Sillin, 2022: Stratospheric influence on the development of the 2018 late winter european cold air outbreak. J. Geophys. Res. Atmos., 127, e2021JD035877, doi:10.1029/2021JD035877. 
  14. Karpechko, A. Y., P. Hitchcock, D. H. W. Peters, and A. Schneidereit, 2017: Predictability of downward propagation of major sudden stratospheric warmings. Quart. J. Roy. Meteor. Soc., 143, 1459-1470, doi:10.1002/qj.3017. 
  15. Karpechko, A. Y., A. Charlton-Perez, M. Balmaseda, N. Tyrrell, and F. Vitart, 2018: Predicting sudden stratospheric warming 2018 and its climate impacts with a multi-model ensemble. Geophys. Res. Lett., 45, 13538-13546, doi:10.1029/2018GL081091. 
  16. Kautz, L.-A., I. Polichtchouk, T. Birner, H. Garny, and J. G. Pinto, 2020: Enhanced extended-range predictability of the 2018 late-winter Eurasian cold spell due to the stratosphere. Quart. J. Roy. Meteor. Soc., 146, 1040-1055, doi:10.1002/qj.3724. 
  17. Kim, H., S.-W. Son, K. Song, S.-W. Kim, H.-S. Kang, and Y.-K. Hyun, 2018: Prediction skill of GloSea5 model for stratospheric polar vortex intensification events. J. Korean Earth Sci. Soc., 39, 211-227, doi:10.5467/JKESS.2018.39.3.211. 
  18. Kim, S.-W., H. Kim, K. Song, S.-W. Son, Y. Lim, H.-S. Kang, and Y.-K. Hyun, 2018: Subseasonal-to-Seasonal (S2S) prediction skills of GloSea5 model: Part 1. Geopotential height in the northern hemisphere extratropics. Atmosphere, 28, 233-245, doi:10.14191/Atmos.2018.28.3.233. 
  19. Kim, H., J. Lee, Y.-K. Hyun, and S.-O. Hwang, 2021: The KMA Global Seasonal Forecasting Systerm (GloSea6) - Part 1: Operational System and Improvements. Atmosphere, 31, 341-359, doi:10.14191/Atmos.2021.31.3.341. 
  20. Knight, J., and Coauthors, 2021: Predictability of european winters 2017/2018 and 2018/2019: Contrasting influences from the Tropics and stratosphere. Atmos. Sci. Lett., 22, e1009, doi:10.1002/asl.1009. 
  21. Larson, J., R. Jacob, and E. Ong, 2005: The model coupling toolkit: A new Fortran90 toolkit for building multiphysics parallel coupled models. Int. J. High Performance Computing Appl., 19, 277-292, doi:10.1177/1094342005056115. 
  22. Martineau, P., and S.-W. Son, 2015: Onset of circulation anomalies during stratospheric vortex weakening events: The role of planetary-scale waves. J. Climate, 28, 7347-7370, doi:10.1175/JCLI-D-14-00478.1. 
  23. Meehl, G. A., and Coauthors, 2021: Initialized Earth systerm prediction from subseaasonal to decadal timescales. Nature. Rev. Earth Environ., 2, 340-357, doi:10.1038/s43017-021-00155-x. 
  24. Rao, J., C. I. Garfinkel, and I. P. White, 2020: Predicting the downward and surface influence of the February 2018 and January 2019 sudden stratospheric warming events in subseasonal to seasonal (S2S) models. J. Geophys. Res. Atmos., 125, e2019JD031919, doi:10.1029/2019JD031919. 
  25. Ridley, J. K., E. W. Blockley, A. B. Keen, J. G. L. Rae, A. E. West, and D. Schroeder, 2018: The sea ice model component of HadGEM3-GC3.1. Geosci. Model Dev., 11, 713-723, doi:10.5194/gmd-11-713-2018. 
  26. Song, K., H. Kim, S.-W. Son, S.-W. Kim, H.-S. Kang, and Y.-K. Hyun, 2018: Subseasonal-to-Seasonal (S2S) prediction of GloSea5 model: Part 2. Stratospheric sudden warming. Atmosphere, 28, 123-139, doi:10.14191/Atmos.2018.28.2.123. 
  27. Statnaia, I., A. Karpechko, M. Kamarainen, and H. Jarvinen, 2022: Stratosphere-troposphere coupling enhances subseasonal predictability of Northern Eurasian cold spells. Quart. J. Roy. Meteor. Soc., 148, 2769-2783, doi:10.1002/qj.4335. 
  28. Storkey, D., and Coauthors, 2018: UK Global Ocean GO6 and GO7: A traceable hierarchy of model resolutions. Geosci. Model Dev., 11, 3187-3213, doi:10.5194/gmd-11-3187-2018. 
  29. Tripathi, O. P, A. Charlton-Perez, M. Sigmond, and F. Vitart, 2015: Enhanced long-range forecast skill in boreal winter following stratospheric strong vortex conditions. Environ. Res. Lett., 10, 104007, doi:10.1088/1748-9326/10/10/104007. 
  30. Walters, D., and Coauthors, 2019: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. Geosci. Model Dev., 12, 1909-1963, doi:10.5194/gmd-12-1909-2019. 
  31. White, C. J., and Coauthors, 2017: Potential applications of subseasonal-to-seasonal (S2S) predictions. Meteor. Appl., 24, 315-325, doi:10.1002/met.1654. 
  32. Williams, K. D., and Coauthors, 2017: The Met Office Global Coupled model 3.0 and 3.1 (GC3.0 and GC3.1) configurations. J. Adv. Modeling Earth Syst., 10, 357-380, doi:10.1002/2017MS001115.