DOI QR코드

DOI QR Code

A modified shell-joint model for segmental tunnel dislocations under differential settlement

  • Jianguo Liu (Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University) ;
  • Xiaohui Zhang (Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University) ;
  • Yuyin Jin (Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University) ;
  • Wenyuan Wang (Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University)
  • Received : 2021.06.26
  • Accepted : 2023.11.02
  • Published : 2023.11.25

Abstract

Reasonable estimates of tunnel lining dislocations in the operation stage, especially under longitudinal differential settlement, are important for the design of waterproof gaskets. In this paper, a modified shell-joint model is proposed to calculate shield tunnel dislocations under longitudinal differential settlement, with the ability to consider the nonlinear shear stiffness of the joint. In the case of shell elements in the model, an elastoplastic damage constitutive model was adopted to describe the nonlinear stress-strain relationship of concrete. After verifying its applicability and correctness against a full-scale tunnel test and a joint shear test, the proposed model was used to analyze the dislocation behaviors of a shield tunnel in Shanghai Metro Line 2 under longitudinal differential settlement. Based on the results, when the tunnel structure is solely subjected to water-earth load, circumferential and longitudinal joint dislocations are all less than 0.1 mm. When the tunnel suffers longitudinal differential settlement and the curvature radius of the differential settlement is less than 300 m, although maximum longitudinal joint dislocation is still less than 0.1 mm, the maximum circumferential joint dislocation is approximately 10.3 mm, which leads to leakage and damage of the tunnel structure. However, with concavo-convex tenons applied to circumferential joints, the maximum dislocation value reduces to 4.5 mm.

Keywords

Acknowledgement

This research was funded by the National Natural Science Foundation of China grant number 52208443, Natural Science Foundation of Shanghai grant number 22ZR1466500, and China Postdoctoral Science Foundation grant number 2022M722958.

References

  1. Chen, R.P., Meng, F.Y., Ye, Y.H. and Liu, Y. (2018), "Numerical simulation of the uplift behavior of shield tunnel during the construction stage", Soils Found., 58(2), 370-381. https://doi.org/10.1016/j.sandf.2018.02.007.
  2. Chen, Z.J., Yang, Z.H. and Li, D.M. (2010), "Study on mechanical properties of longitudinal joint of segmental lining of Shanghai Yangtze River Tunnel", Tunnel Rail Transit, (04), 17-19+63 (in Chinese). https://doi.org/10.13547/j.cnki.dxgcysd.2010.04.011.
  3. Ding, W.Q., Gong, Y.F., Qiao, Y.F. and Gong, C.J. (2020), "Experimental investigation on the mechanical behavior of segmental joint under combined loading of compression-bending-shear", Tunn. Undergr. Sp. Tech., 98. doi:10.1016/j.tust.2020.103346
  4. Do, N.A., Dias, D., Oreste, P. and Djeran-Maigre, I. (2014) "2D numerical investigations of twin tunnel interaction", Geomech. Eng., 6(3), 263-275. https://doi.org/10.12989/gae.2014.6.3.263.
  5. Eskandari, F., Goharrizi, K.G. and Hooti, A. (2018), "The impact of EPB pressure on surface settlement and face displacement in intersection of triple tunnels at Mashhad metro", Geomech. Eng., 15(2), 769-774. https://doi.org/10.12989/gae.2018.15.2.769.
  6. Feng, K., He, C., Qiu, Y., Zhang, L., Wang, W., Xie, H.M., Zhang, Y.Y. and Cao, S.Y. (2018), "Full-scale tests on bending behavior of segmental joints for large underwater shield tunnels", Tunn. Undergr. Sp. Tech., 75, 100-116. https://doi.org/10.1016/j.tust.2018.02.008.
  7. GB 50010-2010(2010), Code for Design of Concrete Structures, National Standard of the People's Republic of China; Beijing, China
  8. Gong, W.P., Juang, C.H., Huang, H.W., Zhang, J. and Luo, Z. (2015), "Improved analytical model for circumferential behavior of jointed shield tunnels considering the longitudinal differential settlement", Tunn. Undergr. Sp. Tech., 45, 153-165. https://doi.org/10.1016/j.tust.2014.10.003.
  9. Hasan, M. and Abdullah, N.M. (2019), "Deformation and crack analysis of tunnel structure subjected to static distributed load using Pseudoshell model", IOP Conference Series: Materials Science and Engineering, 523, 012034. https://doi.org/10.1088/1757-899X/523/1/012034
  10. Jin, Y.L., Ding, W.Q., Yan, Z.G., Soga, K. and Li, Z.L. (2017), "Experimental investigation of the nonlinear behavior of segmental joints in a water-conveyance tunnel", Tunn. Undergr. Sp. Tech., 68, 153-166. https://doi.org/10.1016/j.tust.2017.05.018.
  11. Kim, N.Y., Park, D.H., Jung, H.S. and Kim, M. I. (2020), "Deformation characteristics of the tunnel bottom after construction under geological conditions of long-term deformation", Geomech. Eng., 21(2), 171-178. https://doi.org/10.12989/gae.2020.21.2.171
  12. Lei, M.F., Lin, D.Y., Shi, C.H., Ma, J.J. and Yang, W.C. (2018), "A structural calculation model of shield tunnel segment: heterogeneous equivalent beam model", Adv. Civil Eng., 2018. https://doi.org/10.1155/2018/9637838.
  13. Li, B.Q., Zhang, Z.Y., Wang, X.G. and Liu, X.N. (2019), "Investigation on cohesive zone model of bolted joint for water conveyance tunnel lining", Eng. Comput., 36(5), 1449-1468. https://doi.org/10.1108/ec-07-2018-0310.
  14. Li, D.M., Chen, Z.J. and Yang, Z.H. (2011), "Test and analysis of shear performance of circumferential joint of the segment ring in Shanghai Yangtze River Tunnel", Tunnel. Rail Transit., (01), 15-17+52 (in Chinese). https://doi.org/10.13547/j.cnki.dxgcysd.2011.01.007.
  15. Li, Z., Soga, K., Wang, F., Wright, P. and Tsuno, K. (2014), "Behavior of cast-iron tunnel segmental joint from the 3D FE analyses and development of a new bolt-spring model", Tunn. Undergr. Sp. Tech., 41, 176-192. https://doi.org/10.1016/j.tust.2013.12.012.
  16. Liu, X., Zhang, W. and Wang, D. (2016), "Experimental study on shear performance of longitudinal joint in quasi-rectangular shield tunnel", J. Rail Way Sci. Eng., 13(9), 1767-1775.
  17. Nawel, B. and Salah, M. (2015), "Numerical modeling of two parallel tunnels interaction using three-dimensional finite elements method", Geomech. Eng., 9(6), 775-791. https://doi.org/10.12989/gae.2015.9.6.775.
  18. Nikadat, N. and Marji, M.F. (2016), "Analysis of stress distribution around tunnels by hybridized FSM and DDM considering the influences of joints parameters", Geomech. Eng., 11(2), 269-288. https://doi.org/10.12989/gae.2016.11.2.269.
  19. Salemi, A., Esmaeili, M. and Sereshki, F. (2015), "Normal and shear resistance of longitudinal contact surfaces of segmental tunnel linings", Int. J. Rock Mech. Min. Sci., 77, 328-338. https://doi.org/10.1016/j.ijrmms.2015.04.014.
  20. Shi, C.H., Cao, C.Y., Lei, M.F. and Yang, W.C. (2019), "Sealant Performance Test and Stress-Seepage Coupling Model for Tunnel Segment Joints", Arabian J. Sci. Eng., 44(5), 4201-4212. https://doi.org/10.1007/s13369-018-3357-1
  21. Shi, C.H., Cao, C.Y., Lei, M.F., Peng, L.M. and Ai, H.J. (2016), "Effects of lateral unloading on the mechanical and deformation performance of shield tunnel segment joints", Tunn. Undergr. Sp. Tech., 51, 175-188. https://doi.org/10.1016/j.tust.2015.10.033
  22. Talmon, A.M. and Bezuijen, A. (2013), "Analytical model for the beam action of a tunnel lining during construction", Int. J. Numer. Anal. Method. Geomech., 37(2), 181-200. https://doi.org/10.1002/nag.1092.
  23. Tvede-Jensen, B., Faurschou, M. and Kasper, T. (2017), "A modeling approach for joint rotations of segmental concrete tunnel linings", Tunn. Undergr. Sp. Tech., 67, 61-67. https://doi.org/10.1016/j.tust.2017.04.019.
  24. Wang, B. (2007), "Analysis and test for lining the whole wreath of Shanghai-Chongming tunnel", Master Dissertation; Tongji University, Shanghai, China (in Chinese).
  25. Wang, J.C., Huang, W.M., Xu, R.Q., Yang, Z.X. and Xu, R.Q. (2020), "Analytical approach for circular-jointed shield tunnel lining based on the state space method", Int. J. Numer. Anal. Method. Geomech., 44(5), 575-595. https://doi.org/10.1002/nag.3012.
  26. Wang, M.N., Dong, Y.C., Yu, L., Fang, L., Wang, X.L. and Liu, D.G. (2019), "Experimental and numerical researches of precast segment under radial dislocation conditions", Tunn. Undergr. Sp. Tech., 92. https://doi.org/10.1016/j.tust.2019.103055.
  27. Wang, Z., Wong, R.C.K. and Heinz, H. (2010), "Assessment of long-term behavior of a shallow tunnel in clay till", Geomech. Eng., 2(2), 107-123. https://doi.org/10.12989/gae.2010.2.2.107.
  28. Wu, H.N., Shen, S.L., Liao, S.M. and Yin, Z.Y. (2015), "Longitudinal structural modeling of shield tunnels considering shearing dislocation between segmental rings", Tunn. Undergr. Sp. Tech., 50, 317-323. https://doi.org/10.1016/j.tust.2015.08.001.
  29. Wu, H.N., Shen, S.L., Yang, J. and Zhou, A.N. (2018), "Soil-tunnel interaction modeling for shield tunnels considering shearing dislocation in longitudinal joints", Tunn. Undergr. Sp. Tech., 78, 168-177. https://doi.org/10.1016/j.tust.2018.04.009.
  30. Yan, Q.X., Zhang, C.A., Wu, W., Zhu, H.X. and Yang, W.B. (2019), "3D numerical simulation of shield tunnel subjected to swelling effect considering the nonlinearity of joint bending stiffness", Periodica Polytechnica-Civil Engineering, 63(3), 751-762. https://doi.org/10.3311/PPci.13996.
  31. Yang, F., Cao, S. R., and Li, Q. B. (2019), "An analytical model for the rotational behavior of concrete segmental joints with gaskets", Adv. Struct. Eng., 22(13), 2866-2881. https://doi.org/10.1177/1369433219852566.
  32. Yoo, C., and Cui, S. (2020), "Effect of new tunnel construction on the structural performance of existing tunnel lining", Geomechanics and Engineering, 22(6), 497-507. https://doi.org/10.12989/gae.2020.22.6.497
  33. Zaid, M. (2021), "Three dimensional finite element analysis of urban rock tunnel under static loading condition: Effect of the rock weathering", Geomech. Eng., 25(2), 99-109. https://doi.org/10.12989/gae.2021.25.2.099.
  34. Zhang, D.M., Liu, Z.S., Wang, R.L. and Zhang, D.M. (2019a), "Influence of grouting on rehabilitation of an over-deformed operating shield tunnel lining in soft clay", Acta Geotechnica, 14(4), 1227-1247. https://doi.org/10.1007/s11440-018-0696-8
  35. Zhang, L., Feng, K., Li, M.R., Sun, Y.P., He, C. and Xiao, M.Q. (2019b), "Analytical method regarding the compression-bending capacity of segmental joints: Theoretical model and verification", Tunn. Undergr. Sp. Tech., 93. https://doi.org/10.1016/j.tust.2019.103083.
  36. Zhang, X., Lin, Z., Zhang, K., Di, H., He, C. and Zhou, S. (2023a), "Full-scale experimental test for load-bearing behavior of the carbon fiber shell reinforced stagger-jointed shield tunnel", Compos. Struct., 311, 116773. https://doi.org/10.1016/j.compstruct.2023.116773.
  37. Zhang, X., Zhou, S. and Di, H. (2023b), "Semi-analytical solution for ultimate bearing capacity of straight-jointed segmental tunnel lining", Tunn. Undergr. Sp. Tech., 138, 105160. https://doi.org/10.1016/j.tust.2023.105160.
  38. Zhang, Z.X., Zhang, J.Q., Huang, X. and Zhuang, Q.W. (2020), "Experimental study on prediction of long-term durability of sealing gasket of shield tunnel", J. Zhejiang Univ., (Engineering Science), 54(1), 118-125(in Chinese).
  39. Zhao, W.S., Chen, W.Z. and Yang, F. (2015), "Study of the interface mechanical properties of concrete segments in shield tunnels", Modern Tunn. Tech., 52(3), 119-126. https://doi.org/10.13807/j.cnki.mtt.2015.03.017.
  40. Zou, J.F., Chen, K.F. and Pan, Q.J. (2017), "Influences of seepage force and out-of-plane stress on cavity contracting and tunnel opening", Geomech. Eng., 13(6), 907-928. https://doi.org/10.12989/gae.2017.13.6.907.
  41. Zuo, L.B., Li, G.H., Feng, K., Ma, X.C., Zhang, L., Qiu, Y., Cao, S.Y. and Feng, L. (2018), "Experimental analysis of mechanical behavior of segmental joint for gas pipeline shield tunnel under unfavorable compression-bending loads", Tunn. Undergr. Sp. Tech., 77, 227-236. https://doi.org/10.1016/j.tust.2018.03.005.