DOI QR코드

DOI QR Code

Low complexity hybrid layered tabu-likelihood ascent search for large MIMO detection with perfect and estimated channel state information

  • Sourav Chakraborty (Department of Electronics and Telecommunication Engineering, Indian Institute of Engineering Science and Technology) ;
  • Nirmalendu Bikas Sinha (Maharaja Nandakumar Mahavidyalaya) ;
  • Monojit Mitra (Department of Electronics and Telecommunication Engineering, Indian Institute of Engineering Science and Technology)
  • Received : 2022.02.08
  • Accepted : 2022.08.22
  • Published : 2023.06.20

Abstract

In this work, we proposed a low-complexity hybrid layered tabu-likelihood ascent search (LTLAS) algorithm for large multiple-input multiple-output (MIMO) system. The conventional layered tabu search (LTS) approach involves many partial reactive tabu searches (RTSs), and each RTS requires an initialization and searching phase. In the proposed algorithm, we restricted the upper limit of the number of RTS operations. Once RTS operations exceed the limit, RTS will be replaced by low-complexity likelihood ascent search (LAS) operations. The block-based detection approach is considered to maintain a higher signal-to-noise ratio (SNR) detection performance. An efficient precomputation technique is derived, which can suppress redundant computations. The simulation results show that the bit error rate (BER) performance of the proposed detection method is close to the conventional LTS method. The complexity analysis shows that the proposed method has significantly lower computational complexity than conventional methods. Also, the proposed method can reduce almost 50% of real operations to achieve a BER of 10-3.

Keywords

References

  1. M. A. Albreem, M. Juntti, and S. Shahabuddin, Massive MIMO detection techniques: A survey, IEEE Commun. Surv. Tutorials 21 (2019), no. 4, 3109-3132. https://doi.org/10.1109/COMST.2019.2935810
  2. N. Shlezinger, G. C. Alexandropoulos, M. F. Imani, Y. C. Eldar, and D. R. Smith, Dynamic metasurface antennas for 6g extreme massive MIMO communications, IEEE Wirel. Commun. 28 (2021), no. 2, 106-113.
  3. F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, and F. Tufvesson, Scaling up MIMO: Opportunities and challenges with very large arrays, IEEE Signal Process. Mag. 30 (2013), no. 1, 40-60.
  4. E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, Massive MIMO for next generation wireless systems, IEEE Commun. Mag. 52 (2014), no. 2, 186-195.
  5. H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, Energy and spectral efficiency of very large multiuser MIMO systems, IEEE Trans. Commun. 61 (2013), no. 4, 1436-1449. https://doi.org/10.1109/TCOMM.2013.020413.110848
  6. F. Jin, Q. Liu, H. Liu, and P. Wu, A low complexity signal detection scheme based on improved newton iteration for massive MIMO systems, IEEE Commun. Lett. 23 (2019), no. 4, 748-751. https://doi.org/10.1109/LCOMM.2019.2897798
  7. S. Chakraborty, N. B. Sinha, and M. Mitra, Likelihood ascent search-aided low complexity improved performance massive mimo detection in perfect and imperfect channel state information, Int. J. Commun. Syst. 35 (2022), no. 8, e5113. https://doi.org/10.1002/dac.5113
  8. T. Datta, N. Srinidhi, A. Chockalingam, and B. S. Rajan, Random-restart reactive tabu search algorithm for detection in large-MIMO systems, IEEE Commun. Lett. 14 (2010), no. 12, 1107-1109. https://doi.org/10.1109/LCOMM.2010.101210.101587
  9. M. Karthikeyan and D. Saraswady, Low complexity layered tabu search detection in large MIMO systems, AEU - Int. J. Electron. Commun. 83 (2018), 106-113. https://doi.org/10.1016/j.aeue.2017.08.042
  10. A. K. Sah and A. K. Chaturvedi, An unconstrained likelihood ascent based detection algorithm for large MIMO systems, IEEE Trans. Wirel. Commun. 16 (2017), no. 4, 2262-2273. https://doi.org/10.1109/TWC.2017.2661283
  11. M. Solanki and S. Gupta, Robust conjugate-gradient based las detector for massive MIMO systems, Int. J. Electron. 109 (2021), no. 5, 1-17.
  12. N. Srinidhi, T. Datta, A. Chockalingam, and B. S. Rajan, Layered tabu search algorithm for large-MIMO detection and a lower bound on ML performance, IEEE Trans. Commun. 59 (2011), no. 11, 2955-2963. https://doi.org/10.1109/TCOMM.2011.070511.110058
  13. G. Yao, H. Chen, and J. Hu, An improved expectation propagation based detection scheme for MIMO systems, IEEE Trans. Commun. 69 (2021), no. 4, 2163-2175. https://doi.org/10.1109/TCOMM.2020.3048942
  14. C. Jeon, R. Ghods, A. Maleki, and C. Studer, Optimality of large MIMO detection via approximate message passing, (IEEE International Symposium on Information Theory, Hong Kong, China), June 2015, pp. 1227-1231.
  15. P. Som, T. Datta, N. Srinidhi, A. Chockalingam, and B. S. Rajan, Low-complexity detection in large-dimension MIMO-ISI channels using graphical models, IEEE J. Sel. Topics Signal Process. 5 (2011), no. 8, 1497-1511. https://doi.org/10.1109/JSTSP.2011.2166950
  16. L. G. Barbero and J. S. Thompson, Fixing the complexity of the sphere decoder for MIMO detection, IEEE Trans. Wirel. Commun. 7 (2008), no. 6, 2131-2142. https://doi.org/10.1109/TWC.2008.060378
  17. J. Goldberger and A. Leshem, MIMO detection for high-order qam based on a gaussian tree approximation, IEEE Trans. Inf. Theory 57 (2011), no. 8, 4973-4982. https://doi.org/10.1109/TIT.2011.2159037
  18. V. Gupta, A. K. Sah, and A. K. Chaturvedi, Iterative matrix inversion based low complexity detection in large/massive MIMO systems, (IEEE International Conference on Communications Workshops, Kuala Lumpur, Malaysia), May 2016, pp. 712-717.
  19. L. Liu, J. Lofgren, and P. Nilsson, Area-efficient configurable high-throughput signal detector supporting multiple mimo modes, IEEE Trans. Circ. Syst. I: Regular Papers 59 (2012), no. 9, 2085-2096. https://doi.org/10.1109/TCSI.2012.2185297
  20. Y. Wang and H. Leib, Sphere decoding for MIMO systems with newton iterative matrix inversion, IEEE Commun. Lett. 17 (2013), no. 2, 389-392. https://doi.org/10.1109/LCOMM.2013.010313.121837
  21. P. Svac, F. Meyer, E. Riegler, and F. Hlawatsch, Soft-heuristic detectors for Large MIMO systems, IEEE Transactions on Signal Processing 61 (2013), no. 18, 4573-4586. https://doi.org/10.1109/TSP.2013.2271749
  22. X. Chu and J. McAllister, Software-defined sphere decoding for FPGA-based MIMO detection, IEEE Trans. Signal Process. 60 (2012), no. 11, 6017-6026. https://doi.org/10.1109/TSP.2012.2210951
  23. S. K. Mohammed, A. Zaki, A. Chockalingam, and B. S. Rajan, High-rate space-time coded large-MIMO systems: Low-complexity detection and channel estimation, IEEE J. Sel. Topics Signal Process. 3 (2009), no. 6, 958-974. https://doi.org/10.1109/JSTSP.2009.2035862
  24. A. K. Sah and A. K. Chaturvedi, Sequential and global likelihood ascent search-based detection in large MIMO systems, IEEE Trans. Commun. 66 (2018), no. 2, 713-725. https://doi.org/10.1109/TCOMM.2017.2761383
  25. N. Srinidhi, S. K. Mohammed, A. Chockalingam, and B. Sundar Rajan, Low-complexity near-ML decoding of large non-orthogonal STBCs using reactive tabu search, (IEEE International Symposium on Information Theory, Seoul, Rep. of Korea), 2009, pp. 1993-1997.
  26. N. T. Nguyen and K. Lee, Groupwise neighbor examination for tabu search detection in large MIMO systems, IEEE Trans. Veh. Technol. 69 (2020), no. 1, 1136-1140. https://doi.org/10.1109/TVT.2019.2953635
  27. N. T. Nguyen, K. Lee, and H. Dai, QR-Decomposition-aided tabu search detection for large MIMO Systems, IEEE Trans. Veh. Technol. 68 (2019), no. 5, 4857-4870. https://doi.org/10.1109/TVT.2019.2905642
  28. S. Chakraborty, N. B. Sinha, and M. Mitra, Iteration optimized layered tabu search for large scale MIMO detection, (10th International Conference on Internet of Everything, Microwave Engineering, Communication and Networks, Jaipur, India), 2021, pp. 1-5.
  29. L. Azzam and E. Ayanoglu, Reduced complexity sphere decoding for square QAM via a new lattice representation, (GLOBECOM - IEEE Global Telecommunications Conference, Washington, DC. USA), 2007, pp. 4242-4246.
  30. J. Lofgren and P. Nilsson, On MIMO K-Best Sphere Detector architecture complexity reductions, (2nd International Conference on Signal Processing and Communication Systems, ICSPCS 2008 - Proceedings), 2008, pp. 1-9.
  31. A. K. Sah and A. K. Chaturvedi, Reduced neighborhood search algorithms for low complexity detection in MIMO systems, (IEEE Global Communications Conference, Gold Coast, Australia), 2015, pp. 1-6.
  32. J. P. Kermoal, L. Schumacher, K. I. Pedersen, P. E. Mogensen, and F. Frederiksen, A stochastic MIMO radio channel model with experimental validation, IEEE J. Sel. Areas Commun. 20 (2002), no. 6, 1211-1226. https://doi.org/10.1109/JSAC.2002.801223
  33. B. E. Godana and T. Ekman, Parametrization based limited feedback design for correlated MIMO channels using new statistical models, IEEE Trans. Wirel. Commun. 12 (2013), no. 10, 5172-5184. https://doi.org/10.1109/TWC.2013.092013.130045
  34. M. Biguesh and A. B. Gershman, Training-based MIMO channel estimation: a study of estimator tradeoffs and optimal training signals, IEEE Trans. Signal Process. 54 (2006), no. 3, 884-893. https://doi.org/10.1109/TSP.2005.863008