DOI QR코드

DOI QR Code

Least squares decoding in binomial frequency division multiplexing

  • Myungsup Kim (Department of Radio Communications, Korea Maritime and Ocean University) ;
  • Jiwon Jung (Department of Radio Communications, Korea Maritime and Ocean University) ;
  • Ki-Man Kim (Department of Radio Communications, Korea Maritime and Ocean University)
  • Received : 2021.12.02
  • Accepted : 2022.03.15
  • Published : 2023.04.20

Abstract

This paper proposes a method that can reduce the complexity of a system matrix by analyzing the characteristics of a pseudoinverse matrix to receive a binomial frequency division multiplexing (BFDM) signal and decode it using the least squares (LS) method. The system matrix of BFDM can be expressed as a band matrix, and as this matrix contains many zeros, its amount of calculation when generating a transmission signal is quite small. The LS solution can be obtained by multiplying the received signal by the pseudoinverse matrix of the system matrix. The singular value decomposition of the system matrix indicates that the pseudoinverse matrix is a band matrix. The signal-to-interference ratio is obtained from their eigenvalues. Meanwhile, entries that do not contribute to signal generation are erased to enhance calculation efficiency. We decode the received signal using the pseudoinverse matrix and the removed pseudoinverse matrix to obtain the bit error rate performance and to analyze the difference.

Keywords

References

  1. LTE; Evolved universal terrestrial radio access (E-UTRA); user equipment (UE) radio transmission and reception (3GPP TS 36.101 version 10.3.0 release 10), ETSI TS 136 101 V10.3.0, 2011-06.
  2. Specification framework for TGax, IEEE 802.11-15/0132r15.
  3. A. Papathanassiou, A. K. Salkintzis, and P. T. Mathiopoulos, A comparison study of the uplink performance of W-CDMA and OFDM for mobile multimedia communications via LEO satellites, IEEE Pers. Commun. 8 (2001), no. 3, 35-43. https://doi.org/10.1109/98.930095
  4. Digital Video Broadcasting (DVB). Transmission system for handheld terminals (DVB-H), ETSI (2004), EN 302304 v1.1.1.
  5. L. Cho, X. H. Yu, C. Y. Chen, and C. Y. Hsu, Green OFDM for IoT: Minimizing IBO subject to a spectral mask, (IEEE International Conference on Applied System Invention, Chiba, Japan), 2018, pp. 13-17. https://doi.org/10.1109/ICASI.2018.8394252
  6. D. Qu, J. Ding, T. Jiang, and X. Sun, Detection of non-contiguous OFDM symbols for cognitive radio systems without out-of-band spectrum synchronization, IEEE Trans. Wirel. Commun. 10 (2011), no. 2, 693-701. https://doi.org/10.1109/TWC.2011.120810.101324
  7. A. Sahin, I. Guvenc, and H. Arslan, A survey on multicarrier communications: Prototype filters, lattice structures, and implementation aspects, IEEE Commun. Tut. 16 (2014), no. 3, 1312-1338. https://doi.org/10.1109/SURV.2013.121213.00263
  8. A. Sahin and H. Arslan, Edge windowing for OFDM based systems, IEEE Commun. Lett. 15 (2011), no. 11, 1208-1211. https://doi.org/10.1109/LCOMM.2011.090611.111530
  9. C.-D. Chung, Spectral precoding for rectangular pulsed OFDM, IEEE Trans. Commun. 59 (2008), no. 9, 1498-1510. https://doi.org/10.1109/TCOMM.2008.060459
  10. C.-D. Chung and K.-W. Chen, Spectrally precoded OFDM without guard insertion, IEEE Trans. Veh. Technol. 66 (2017), no. 1, 107-121.
  11. W.-C. Chen and C.-D. Chung, Spectrally efficient OFDM pilot waveform for channel estimation, IEEE Trans. Commun. 65 (2017), no. 1, 387-402.
  12. M. Ma, X. Huang, B. Jiao, and Y. J. Guo, Optimal orthogonal precoding for power leakage suppression in DFT-based systems, IEEE Trans. Commun. 59 (2011), no. 3, 387-402.
  13. J. van de Beek and F. Berggren, N-continuous OFDM, IEEE Commun. Lett. 13 (2009), no. 1, 1-3. https://doi.org/10.1109/LCOMM.2009.081446
  14. A. Tom, A. Sahin, and H. Arslan, Suppressing alignment: Joint PAPR and out-of-band power leakage reduction for OFDM-based systems, IEEE Trans. Commun. 64, no. 3, 1100-1109.
  15. B. Farhang-Boroujeny, OFDM versus filter bank multicarrier, IEEE Signal Process. Mag. 28 (2011), no. 3, 92-112. https://doi.org/10.1109/MSP.2011.940267
  16. R. Datta, N. Michailow, M. Lentmaier, and G. Fettweis, GFDM interference cancellation for flexible cognitive radio PHY design, (IEEE Vehicular Technology Conference, Quebec, Canada), 2021, pp. 1-5.
  17. J. K. Jeong, Y. S. Park, S. W. Weon, J. T. Kim, S. Y. Choi, and D. S. Hong, Eigendecomposition-based GFDM for interference-free data transmission and pilot insertion for channel estimation, IEEE Trans. Wireless Commun. 17 (2018), no. 10, 6931-6943. https://doi.org/10.1109/TWC.2018.2864995
  18. F. Li, K. Zheng, L. Zhao, H. Zhao, and Y. Li, Design and performance of a novel interference-free GFDM transceiver with dual filter, IEEE Trans. VT. 68 (2019), no. 5, 3045-3061.
  19. J. Abdoli, M. Jia, and J. Ma, Filtered OFDM, a new waveform for future wireless systems, (IEEE 16th International Workshop on Signal Processing Advanceds iin Wireless Communications, Stockhlom, Sweden), 2015. https://doi.org/10.1109/SPAWC.2015.7227001
  20. H. Chen, J. Hua, F. Li, F. Chen, and D. Wang, Interference analysis in the asynchronous f-OFDM systems, IEEE Trans. Commun. 67 (2019), no. 5, 3580-3596. https://doi.org/10.1109/TCOMM.2019.2898867
  21. L. Diez, J. A. Cortes, F. J. Canete, E. Martos, and S. Iranzo, A generalized spectral shaping method for OFDM signals, IEEE Trans. Commun. 67 (2019), no. 5, 3540-3551. https://doi.org/10.1109/TCOMM.2019.2892750
  22. J. A. C. Bingham, RFI suppression in multicarrier transmission systems, (Proceedings of the IEEE Global Telecommunications Conference, London, UK), 1996, pp. 1026-1030.
  23. T. Weiss, J. Hillenbrand, A. Krohn, and F. K. Jondral, Mutual interference in OFDM-based spectrum pooling systems, (IEEE 59th Vehicular Technology Conference, Milan, Italy), 2004, pp. 1873-1877.
  24. D. Qu, A. Wang, and T. Jiang, Extended active interference cancellation for sidelobe suppression in cognitive radio OFDM systems with cyclic prefix, IEEE Trans. Veh. Tech. 59 (2010), no. 4, 1689-1695. https://doi.org/10.1109/TVT.2010.2040848
  25. M. S. Kim, D. Y. Kwak, J. W. Jung, and K. M. Kim, Spectral encapsulation of OFDM: Vectorized structure with minimal complexity, ETRI J. (2020), 660-673.
  26. M. S. Kim, D. Y. Kwak, K. M. Kim, and W. J. Kim, Spectral encapsulation of OFDM systems based on orthogonalization for short packet transmission, ETRI J. 42 (2020), 859-871. https://doi.org/10.4218/etrij.2019-0307
  27. M. S. Kim, J. W. Jung, D. Y. Kwak, K. M. Kim, and W. J. Kim, Spectral encapsulation to block the out-of-band emission of OFDM signals for future communications, (IEEE 91st Vehicular Technology Conference, Antwerp, Belguim), 2020. https://doi.org/10.1109/VTC2020-Spring48590.2020.9129421
  28. M. S. Kim, D. Y. Kwak, and K. M. Kim, Binomial frequency division multiplexing: noble waveform with spectral efficiency and robustness to multipath fading, (VTC 2019-Spring), May. 2019.
  29. M. S. Kim, J. S. Seong, M. A. Joong, and S. R. Lee, Multinomial filter, (International Conference on Information and Communication Technology Convergence, Busan Rep. of Korea), 2014. https://doi.org/10.1109/ICTC.2014.6983301
  30. https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse, WIKIPEDIA.