DOI QR코드

DOI QR Code

Co-located and space-shared multiple-input multiple-output antenna module and its applications in 12 × 12 multiple-input multiple-output systems

  • Longyue Qu (School of Electronics and Information Engineering, Harbin Institute of Technology) ;
  • Haiyan Piao (Hanyang Antenna Design Co. Ltd.) ;
  • Guohui Dong (China United Network Communications Group Co. Ltd)
  • Received : 2021.12.13
  • Accepted : 2022.04.26
  • Published : 2023.04.20

Abstract

In this study, we developed a co-located and space-shared multiple-input multiple-output (MIMO) antenna module with a modular design and high integration level. The proposed antenna pair includes a half-wavelength loop antenna and a dipole-type antenna printed on the front and back sides of a compact modular board. Owing to their modal orthogonality, these two independent antenna elements are highly self-isolated and free of additional decoupling components, even though they are assembled at the same location and within the same space. Thus, the proposed antenna is attractive in 5G MIMO systems. Furthermore, the proposed co-located and space-shared MIMO antenna module was employed in a 5G smartphone to verify their radiation and diversity performances. A 12 × 12 MIMO antenna system was simulated and fabricated using the proposed module. Based on the results, the proposed module can be employed in large-scale MIMO antenna systems for current and future terminal devices owing to its high integration, compactness, simple implementation, and inherent isolation.

Keywords

Acknowledgement

This research was supported by Hanyang Antenna Design Co. Ltd., Shenzhen, China.

References

  1. F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, Five disruptive technology directions for 5G, IEEE Commun. Mag. 52 (2014), no. 2, 74-80.
  2. E. Bjornson, E. G. Larsson, and T. L. Marzetta, Massive MIMO: ten myths and one critical question, IEEE Commun. Mag. 54 (2016), no. 2, 114-123.
  3. A. Al-Wahhamy, H. Al-Rizzo, and N. E. Buris, Efficient evaluation of massive MIMO channel capacity, IEEE Syst. J. 14 (2020), no. 1, 614-620. https://doi.org/10.1109/JSYST.2019.2900006
  4. WRC-15 Press Release, World Radiocommunication Conference allocates spectrum for future innovation. Available from: http://www.itu.int/net/pressoffice/press_releases/2015/56.aspx [last accesed November 2015].
  5. S. W. Su, C. T. Lee, and S. C. Chen, Very-low-profile, triband, two-antenna system for WLAN notebook computers, IEEE Antennas Wirel. Propag. Lett. 17 (2018), no. 9, 1626-1629. https://doi.org/10.1109/LAWP.2018.2858849
  6. M. Wang, B. Xu, Y. Li, Y. Luo, H. Zou, and G. Yang, Multiband multiple-input multiple-output antenna with high isolation for future 5G smartphone applications, Int. J. RF Microw. Comput. Aid. Eng. 29 (2019), no. 7, e21758.
  7. Y. Li, C.-Y. D. Sim, Y. Luo, and G. Yang, Metal-frame-integrated eight-element multiple-input multiple-output antenna array in the long term evolution bands 41/42/43 for fifth generation smartphones, Int. J. RF Microw. Comput. Aid. Eng. 29 (2019), no. 1, e21495.
  8. Y. Li, C. Y. D. Sim, Y. Luo, and G. Yang, 4G/5G multiple antennas for future multi-mode smartphone applications, IEEE Access 6 (2019), no. 2019, 28041-28053.
  9. D. Serghiou, M. Khalily, V. Singh, A. Araghi, and R. Tafazolli, Sub-6 GHz dual-band 8 × 8 MIMO antenna for 5G smartphones, IEEE Antennas Wirel. Propag. Lett. 19 (2020), no. 9, 1546-1550. https://doi.org/10.1109/LAWP.2020.3008962
  10. C. Deng, Compact broadband multi-input multi-output antenna covering 3300 to 6000 MHz band for 5G mobile terminal applications, Microw. Opt. Technol. Lett. 62 (2020), no. 10, 1-7. https://doi.org/10.1002/mop.32187
  11. H. Piao, Y. Jin, Y. Xu, and L. Qu, MIMO ground-radiation antennas using a novel closed-decoupling-loop for 5G applications, IEEE Access 8 (2020), 142714-142724. https://doi.org/10.1109/ACCESS.2020.3014243
  12. Z. Xu and C. Deng, High-isolated MIMO antenna design based on pattern diversity for 5G mobile terminals, IEEE Antennas Wirel. Propag. Lett 19 (2020), no. 3, 467-471. https://doi.org/10.1109/LAWP.2020.2966734
  13. Y. Q. Hei, J. G. He, and W. T. Li, Wideband decoupled 8-element MIMO antenna for 5G mobile terminal applications, IEEE Antennas Wirel. Propag. Lett 20 (2021), no. 8, 1448-1452. https://doi.org/10.1109/LAWP.2021.3086261
  14. M. Y. Li, Y. L. Ban, Z.-Q. Xu, J. Guo, and Z.-F. Yu, Tri-polarized 12-antenna MIMO array for future 5G smartphone applications, IEEE Access 6 (2018), 6160-6170. https://doi.org/10.1109/ACCESS.2017.2781705
  15. Y. Liu, A. Ren, H. Liu, H. Wang, and C. Y. D. Sim, Eight-port MIMO array using characteristic mode theory for 5G smartphone applications, IEEE Access 7 (2019), 45679-45692. https://doi.org/10.1109/ACCESS.2019.2909070
  16. C.-Y. D. Sim, H. Y. Liu, and C. J. Huang, Wideband MIMO antenna array design for future mobile devices operating in the 5G NR frequency bands n77/n78/n79 and LTE Band 46, IEEE Antennas Wirel. Propag. Lett. 19 (2020), no. 1, 74-78. https://doi.org/10.1109/LAWP.2019.2953334
  17. A. Zhao and Z. Ren, Size reduction of self-isolated MIMO antenna system for 5G mobile phone applications, IEEE Antennas Wirel. Propag. Lett. 18 (2019), no. 1, 152-156. https://doi.org/10.1109/LAWP.2018.2883428
  18. M.-Y. Li, Y.-L. Ban, Z.-Q. Xu, G. Wu, C.-Y.-D. Sim, K. Kang, and Z.-F. Yu, Eight-port orthogonally dual-polarized antenna array for 5G smartphone applications, IEEE Trans. Antennas Propag. 64 (2016), no. 9, 3820-3830.
  19. N. O. Parchin, Y. I. A. Al-Yasir, A. H. Ali, I. Elfergani, J. M. Noras, J. Rodriguez, and R. A. Abd-Alhameed, Eight-element dual-polarized MIMO slot antenna system for 5G smartphone applications, IEEE Access 7 (2019), 15612-15622. https://doi.org/10.1109/ACCESS.2019.2893112
  20. K.-L. Wong, C.-Y. Tsai, and J.-Y. Lu, Two asymmetrically mirrored gap-coupled loop antennas as a compact building block for eight-antenna MIMO array in the future smartphone, IEEE Trans. Antennas Propag. 65 (2017), no. 4, 1765-1778. https://doi.org/10.1109/TAP.2017.2670534
  21. A. Ren, Y. Liu, and C.-Y. Sim, A compact building block with two shared-aperture antennas for eight-antenna MIMO array in metal-rimmed smartphone, IEEE Trans. Antennas Propag. 67 (2019), no. 10, 6430-6438. https://doi.org/10.1109/TAP.2019.2920306
  22. L. Chang, Y. Yu, K. Wei, and H. Wang, Polarization-orthogonal co-frequency dual antenna pair suitable for 5G MIMO smartphone with metallic bezels, IEEE Trans. Antennas Propag. 67 (2019), no. 8, 5212-5220. https://doi.org/10.1109/TAP.2019.2913738
  23. H. Piao, Y. Jin, and L. Qu, Isolated ground-radiation antenna with inherent decoupling effect and its applications in 5G MIMO antenna array, IEEE Access 8 (2020), 139892-139902. https://doi.org/10.1109/ACCESS.2020.3013140
  24. H. Piao, Y. Jin, and L. Qu, A compact and straightforward self-decoupled MIMO antenna system for 5G applications, IEEE Access 8 (2020), 129236-129245. https://doi.org/10.1109/ACCESS.2020.3008966
  25. C.-Z. Han, L. Xiao, Z. Chen, and T. Yuan, Co-located self-neutralized handset antenna pairs with complementary radiation patterns for 5G MIMO applications, IEEE Access 8 (2020), 73151-73163. https://doi.org/10.1109/ACCESS.2020.2988072
  26. X.-T. Yuan, Z. Chen, T. Gu, and T. Yuan, A wideband PIFA-pair-based MIMO antenna for 5G smartphones, IEEE Antennas Wirel. Propag. Lett. 20 (2021), no. 3, 371-375. https://doi.org/10.1109/LAWP.2021.3050337
  27. L. Sun, Y. Li, Z. Zhang, and H. Wang, Self-decoupled MIMO antenna pair with shared radiator for 5G smartphones, IEEE Trans. Antennas Propag. 68 (2020), no. 5, 3423-3432. https://doi.org/10.1109/TAP.2019.2963664
  28. L. Sun, H. Feng, Y. Li, and Z. Zhang, Compact 5G MIMO mobile phone antennas with tightly arranged orthogonal-mode pairs, IEEE Trans. Antennas Propag. 66 (2018), no. 11, 6364-6369. https://doi.org/10.1109/TAP.2018.2864674
  29. Z. Ren and A. Zhao, Dual-band MIMO antenna with compact self-decoupled antenna pairs for 5G mobile applications, IEEE Access 7 (2019), 82288-82296.
  30. A. Constantine, Balanis, antenna theory: analysis and design, 4th ed., John Wiley & Sons, 2016.
  31. R. G. Vaughan and J. B. Andersen, Antenna diversity in mobile communications, IEEE Trans. Veh. Technol. 36 (1987), 149-172. https://doi.org/10.1109/T-VT.1987.24115
  32. C95. 1-2019 - IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz. Available from: https://standards.ieee.org/standard/C95_1-2019.html. [last accessed: June 2020].