DOI QR코드

DOI QR Code

Ultrawideband coupled relative positioning algorithm applicable to flight controller for multidrone collaboration

  • Jeonggi Yang (Mobility Infra Research Section, Electronics and Telecommunications Research Institute) ;
  • Soojeon Lee (Mobility Infra Research Section, Electronics and Telecommunications Research Institute)
  • 투고 : 2023.03.28
  • 심사 : 2023.08.09
  • 발행 : 2023.10.20

초록

In this study, we introduce a loosely coupled relative position estimation method that utilizes a decentralized ultrawideband (UWB), Global Navigation Support System and inertial navigation system for flight controllers (FCs). Key obstacles to multidrone collaboration include relative position errors and the absence of communication devices. To address this, we provide an extended Kalman filter-based algorithm and module that correct distance errors by fusing UWB data acquired through random communications. Via simulations, we confirm the feasibility of the algorithm and verify its distance error correction performance according to the amount of communications. Real-world tests confirm the algorithm's effectiveness on FCs and the potential for multidrone collaboration in real environments. This method can be used to correct relative multidrone positions during collaborative transportation and simultaneous localization and mapping applications.

키워드

과제정보

This study was supported by the Electronics and Telecommunications Research Institute (ETRI) grant funded by the Korean Government (23ZS1200, Fundamental Technology Research for Human-Centric Autonomous Intelligent Systems).

참고문헌

  1. H.G. Marina and E. Smeur, Flexible collaborative transportation by a team of rotorcraft, (Proc. International Conference on Robotics and Automation, Montreal, Canada), 2019, pp. 1074-1080.
  2. A. Tagliabue, M. Kamel, S. Veriling, R. Siegwart, and J. Nieto, Collaborative transportation using MAVs via passive force control, (Proc. International Conference on Robotics and Automation, Singapore), 2017, pp. 5766-5773.
  3. J. Gu, T. Su, Q. Wang, X. Du, and M. Guizani, Multiple moving targets surveillance based on a cooperative network for multi-UAV, IEEE Communic. Mag. 56 (2018), 82-89. https://doi.org/10.1109/MCOM.2018.1700422
  4. P. Schmuck and M. Chli, Multi-UAV collaborative monocular SLAM, (Proc. International Conference on Robotics and Automation, Singapore), 2017, pp. 3863-3870.
  5. L. Bekmezci, O. K. Sahingoz, and S. Temel, Flying ad hoc networks (FANETs): a survey, Ad Hoc Netw. 3 (2013), 1254-1270. https://doi.org/10.1016/j.adhoc.2012.12.004
  6. F. Noor, M. A. Khan, A. Al-Zahrani, I. Ullah, and K. A. Al-Dhlan, A review on communications perspective of flying AD-HOC networks: key enabling wireless technologies, applications, challenges and open research topics, Drones 4 (2020), 65.
  7. X. Lin, V. Yajnanarayana, S. D. Muruganathan, S. Gao, H. Asplund, H. L. Maattanen, M. Bergstrom, S. Euler, and Y. P. E. Wang, The sky is not the limit: LTE for unmanned aerial vehicles, IEEE Communic. Mag. 56 (2018), 204-210. https://doi.org/10.1109/MCOM.2018.1700643
  8. A. Guillen-Perez, R. Sanchez-Iborra, M. Cano, J.C. Sanchez-Aarnoutse, and J. Garcia-Haro, WiFi networks on drones, (Proc. ITU Kaleidoscope: ITU WT, Bangkok, Thailand), 2016, pp. 1-8.
  9. P. R. Soria, A. F. Palomino, B.C. Arrue, and A. Ollero, Bluetooth network for micro-UAVs for communication network and embedded range only localization, (Proc. International Conference on Ummanned Aircraft System, Miami, FL, USA), 2017, pp. 747-752.
  10. P. Sedlacek, M. Slanina, and P. Masek, An overview of the IEEE 802.15. 4z standard its comparison and to the existing UWB standards, (Proc. IEEE International Conference Radioelektronika Pardubice, Pardubice, Czech Republic), 2019, pp. 1-6.
  11. K. Sivanand, A UWB based localization system for indoor robot navigation, (Proc. IEEE International Conference on Ultra-Wideband, Singapore), 2007, pp. 77-82.
  12. S. Wang, UWB-based localization for multi-UAV systems and collaborative heterogeneous multi-robot systems, Procedia Comput. Sci. 175 (2020), 357-364.
  13. T.M. Nguyen, A.H. Zaini, K. Guo, and L. Xie, An ultra-wideband-based multi-UAV localization system in GPS-denied environments, (Proc. International Micro Air Vehicles Conference, Beijing, China), 2016, pp. 1-15.
  14. G. Kexin, X. Li, and L. Xie, Ultra-wideband and odometry-based cooperative relative localization with application to multi-UAV formation control, IEEE Trans. Cybernet. 50 (2019), 2590-2603. https://doi.org/10.1109/TCYB.2019.2905570
  15. H. Xu, L. Wang, Y. Zhang, K. Qiu, and S. Shen, Decentralized visual-inertial-UWB fusion for relative state estimation of aerial swarm, (Proc. IEEE ICRA_, Paris, France), 2020, pp. 8776-8782.
  16. D. Pietra, V. P. Dabove, and M. Piras, Loosely coupled GNSS and UWB with INS integration for indoor/outdoor pedestrian navigation, Sensors 20 (2020), 6292.
  17. W. Changqiang, A seamless navigation system and applications for autonomous vehicles using a tightly coupled GNSS/UWB/INS/map integration scheme, Remote Sens. (Basel) 14 (2021), no. 1, 27.
  18. S. Shital D. Dey, C. Lovett, and A. Kapoor, AirSim: high-fidelity visual and physical simulation for autonomous vehicles, (Proc. Field and Service Robotics: Results of the 11th International Conference, Zurich, Switzerland), 2017, pp. 621-635.
  19. IEEE Std. 802.15.4z-2020, IEEE standard for low-rate wireless networks-amendment 1: enhanced ultra-wideband (UWB) physical layers (PHYs) and associated ranging techniques, IEEE, 2020.
  20. A. Ledergerber and R. D'andrea, Calibrating away inaccuracies in ultra-wideband range measurements: a maximum likelihood approach, IEEE Access 6 (2018), 78719-78730. https://doi.org/10.1109/ACCESS.2018.2885195
  21. M. Lorenz, D. Honegger, and M. Pollefeys, PX4: A node-based multithreaded open source robotics framework for deeply embedded platforms, (Proc. IEEE ICRA, Seattle, WA, USA), 2015, pp. 6235-6240.
  22. Y. Hong, S. Kim, Y. Kim, and J. Cha, Quadrotor path planning using A* search algorithm and minimum snap trajectory generation, ETRI J. 43 (2021), 1013-1023. https://doi.org/10.4218/etrij.2020-0085
  23. S. Jung, H. Lee, D. H. Shim, and A. al Agha-Mohammadi, Collision-free local planner for unknown subterranean navigation, ETRI J. 43 (2021), 580-593. https://doi.org/10.4218/etrij.2021-0087