DOI QR코드

DOI QR Code

Proportionally fair load balancing with statistical quality of service provisioning for aerial base stations

  • Shengqi Jiang (Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman) ;
  • Ying Loong Lee (Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman) ;
  • Mau Luen Tham (Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman) ;
  • Donghong, Qin (School of Artificial Intelligence, Guangxi University for Nationalities) ;
  • Yoong Choon Chang (Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman) ;
  • Allyson Gek Hong Sim (SEEMOO Lab, Technische Universitat Darmstadt)
  • Received : 2023.01.27
  • Accepted : 2023.05.23
  • Published : 2023.10.20

Abstract

Aerial base stations (ABSs) seem promising to enhance the coverage and capacity of fifth-generation and upcoming networks. With the flexible mobility of ABSs, they can be positioned in air to maximize the number of users served with a guaranteed quality of service (QoS). However, ABSs may be overloaded or underutilized given inefficient placement, and user association has not been well addressed. Hence, we propose a three-dimensional ABS placement scheme with a delay-QoS-driven user association to balance loading among ABSs. First, a load balancing utility function is designed based on proportional fairness. Then, an optimization problem for joint ABS placement and user association is formulated to maximize the utility function subject to statistical delay QoS requirements and ABS collision avoidance constraints. To solve this problem, we introduce an efficient modified gray wolf optimizer for ABS placement with a greedy user association strategy. Simulation results demonstrate that the proposed scheme outperforms baselines in terms of load balancing and delay QoS provisioning.

Keywords

Acknowledgement

Deutsche Forschungsgemeinschaft; Initiation of International Collaboration within the 6G Multi-RATs Communication Systems (6G-RATs) project; LOEWE Initiatives; Universiti Tunku Abdul Rahman, Grant/Award Number: IPSR/RMC/UTARRF/2020-C2/L07

References

  1. Y. Zeng, Q. Wu, and R. Zhang, Accessing from the sky: A tutorial on uav communications for 5G and beyond, Proc. IEEE 107 (2019), no. 12, 2327-2375. https://doi.org/10.1109/JPROC.2019.2952892
  2. C. Zhang, L. Zhang, L. Zhu, T. Zhang, Z. Xiao, and X.-G. Xia, 3D deployment of multiple UAV-mounted base stations for uav communications, IEEE Trans. Commun. 69 (2021), no. 4, 2473-2488. https://doi.org/10.1109/TCOMM.2021.3049387
  3. M. Mozaffari, W. Saad, M. Bennis, Y.-H. Nam, and M. Debbah, A tutorial on UAVs for wireless networks: Applications, challenges, and open problems, IEEE Commun. Surv. Tutorials 21 (2019), no. 3, 2334-2360. https://doi.org/10.1109/COMST.2019.2902862
  4. P. Han, Z. Zhou, and Z. Wang, User association for load balance in heterogeneous networks with limited CSI feedback, IEEE Commun. Lett. 24 (2020), no. 5, 1095-1099.
  5. Y. L. Lee, T. C. Chuah, A. A. El-Saleh, and J. Loo, User association for backhaul load balancing with quality of service provisioning for heterogeneous networks, IEEE Commun. Lett. 22 (2018), no. 11, 2338-2341. https://doi.org/10.1109/LCOMM.2018.2867181
  6. Q. Ye, B. Rong, Y. Chen, M. Al-Shalash, C. Caramanis, and J. G. Andrews, User association for load balancing in heterogeneous cellular networks, IEEE Trans. Wirel. Commun. 12 (2013), no. 6, 2706-2716. https://doi.org/10.1109/TWC.2013.040413.120676
  7. J. Hu, H. Zhang, Y. Liu, X. Li, and H. Ji, An intelligent UAV deployment scheme for load balance in small cell networks using machine learning, (IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco), 2019, pp. 1-6.
  8. Z. Luan, H. Jia, P. Wang, R. Jia, and B. Chen, Joint UAVs' load balancing and UEs' data rate fairness optimization by diffusion UAV deployment algorithm in multi-UAV networks, Entropy 23 (2021), no. 11, 1470.
  9. M. Sami and J. N. Daigle, User association and power control for UAV-enabled cellular networks, IEEE Wirel. Commun. Lett. 9 (2019), no. 3, 267-270.
  10. C. Singhal and K. Rahul, LB-UAVnet: Load balancing algorithm for UAV based network using SDN, (22nd International Symposium on Wireless Personal Multimedia Communications (WPMC), Lisbon, Portugal), 2019, pp. 1-5.
  11. H. Niu, X. Zhao, and J. Li, 3D location and resource allocation optimization for UAV-enabled emergency networks under statistical QoS constraint, IEEE Access 9 (2021), 41566-41576. https://doi.org/10.1109/ACCESS.2021.3065055
  12. D. Wu and R. Negi, Effective capacity: a wireless link model for support of quality of service, IEEE Trans. Wirel. Commun. 2 (2003), no. 4, 630-643.
  13. X. Zhang, W. Cheng, and H. Zhang, Heterogeneous statistical qos provisioning over airborne mobile wireless networks, IEEE J. Sel. Areas Commun. 36 (2018), no. 9, 2139-2152. https://doi.org/10.1109/JSAC.2018.2864415
  14. H. El Hammouti, M. Benjillali, B. Shihada, and M.-S. Alouini, Learn-as-you-fly: A distributed algorithm for joint 3D placement and user association in multi-UAVs networks, IEEE Trans. Wirel. Commun. 18 (2019), no. 12, 5831-5844. https://doi.org/10.1109/TWC.2019.2939315
  15. Y. Sun, T. Wang, and S. Wang, Location optimization and user association for unmanned aerial vehicles assisted mobile networks, IEEE Trans. Veh. Technol. 68 (2019), no. 10, 10056-10065. https://doi.org/10.1109/TVT.2019.2933560
  16. X. Xi, X. Cao, P. Yang, J. Chen, T. Quek, and D. Wu, Joint user association and UAV location optimization for UAV-aided communications, IEEE Wirel. Commun. Lett. 8 (2019), no. 6, 1688-1691. https://doi.org/10.1109/LWC.2019.2937077
  17. S. Shakoor, Z. Kaleem, D.-T. Do, O. A. Dobre, and A. Jamalipour, Joint optimization of UAV 3-D placement and path-loss factor for energy-efficient maximal coverage, IEEE Internet Things J. 8 (2020), no. 12, 9776-9786.
  18. T. Abrao, S. Yang, L. D. H. Sampaio, P. J. E. Jeszensky, and L. ˜ Hanzo, Achieving maximum effective capacity in OFDMA networks operating under statistical delay guarantee, IEEE Access 5 (2017), 14333-14346. https://doi.org/10.1109/ACCESS.2017.2731851
  19. D. Zwillinger and A. Jeffrey, Table of integrals, series, and products, Elsevier, 2007.
  20. F. Kelly, Charging and rate control for elastic traffic, Eur. Trans. Telecommun. 8 (1997), no. 1, 33-37. https://doi.org/10.1002/ett.4460080106
  21. S. Mirjalili, S. M. Mirjalili, and A. Lewis, Grey wolf optimizer, Adv. Eng. Softw. 69 (2014), 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007
  22. C. Hu, L. Ding, B. Liu, S. Ding, J. Huang, H. Wang, Y. Liu, and M. Tan, Multi unmanned aerial vehicle area coverage control based on enhanced alpha-guided grey wolf optimizer, (International Conference on Electronic Information Technology and Smart Agriculture (ICEITSA), Huaihua, China), 2021, pp. 410-415.
  23. X. Wang, H. Zhao, T. Han, H. Zhou, and C. Li, A grey wolf optimizer using gaussian estimation of distribution and its application in the multi-UAV multi-target urban tracking problem, Appl. Soft Comput. 78 (2019), 240-260. https://doi.org/10.1016/j.asoc.2019.02.037
  24. M. M. Azari, G. Geraci, A. Garcia-Rodriguez, and S. Pollin, UAV-to-UAV communications in cellular networks, IEEE Trans. Wirel. Commun. 19 (2020), no. 9, 6130-6144. https://doi.org/10.1109/TWC.2020.3000303
  25. M. Simunek, P. Pechac, and F. P. Fontan, Excess loss model for low elevation links in urban areas for UAVs, Radioengineering 20 (2011), no. 3, 561-568.
  26. Z. Wei, Y. Cai, Z. Sun, D. W. K. Ng, J. Yuan, M. Zhou, and L. Sun, Sum-rate maximization for IRS-assisted UAV OFDMA communication systems, IEEE Trans. Wirel. Commun. 20 (2020), no. 4, 2530-2550.
  27. S. Lim, H. Yu, and H. Lee, Optimal tethered-UAV deployment in A2G communication networks: Multi-agent Q-learning approach, IEEE Internet Things J. 9 (2022), no. 19, 18539-18549. https://doi.org/10.1109/JIOT.2022.3161260
  28. H. Huang and A. V. Savkin, Deployment of heterogeneous UAV base stations for optimal quality of coverage, IEEE Internet Things J. 9 (2022), no. 17, 16429-16437.
  29. X. Luo, J. Xie, L. Xiong, Z. Wang, and C. Tian, 3-D deployment of multiple UAV-mounted mobile base stations for full coverage of IoT ground users with different QoS requirements, IEEE Commun. Lett. 26 (2022), no. 12, 3009-3013.
  30. R. Jain, The art of computer systems performance analysis: techniques for experimental design, measurement, simulation, and modeling, John Wiley & Sons, 1990.