Acknowledgement
This work was supported by the Semiconductor major track (Materials, Components, Equipment) project supported by the Ministry of Education and the Ministry of Trade, Industry and Energy (No. P0022196).
References
- Roy, P., Ghosh, A., Barclay, F., Khare, A., & Cuce, E. (2022). Perovskite Solar Cells: A Review of the Recent Advances. Coatings, 12(8), 1089. DOI : 10.3390/coatings12081089
- Li, Y. et al. (2022). Recent Progress in Organic Solar Cells: A Review on Materials from Acceptor to Donor. Molecules, 27(6), 1800. DOI : 10.3390/molecules27061800
- Yang, M., Liu, M., & Zhu, K. (2016). Graded Bandgap Perovskite Solar Cells. Nano Letters, 16(3), 1234-1239. DOI : 10.1021/acs.nanolett.5b04808
- Yu, C., Xu, S., Yao, J., & Han, S., (2018). Recent Advances in and New Perspectives on Crystalline Silicon Solar Cells with Carrier-Selective Passivation Contacts. Crystals, 8(11), 430. DOI : 10.3390/cryst8110430
- Liu, W., Massiot, I., Cattoni, A., & Collin, S. (2020). Bendy Silicon Solar Cells Pack a Powerful Punch. Nature Energy, 5, 959-972. DOI : 10.1038/s41560-020-0671-0
- Battaglia, C., Cuevas, A., & De Wolf, S. (2016). High-efficiency crystalline silicon solar cells: status and perspectives. Energy & Environmental Science, 9(5), 1552-1576. DOI : 10.1039/C5EE03380B
- Khachatryan, H. et al. (2018). Novel method for dry etching CH3NH3PbI3 perovskite films utilizing atmospheric-hydrogen -plasma. Materials Science in Semiconductor Processing, 75, 1–9. DOI : 10.1016/j.mssp.2017.11.019
- Khachatryan, H. et al. (2019). Direct etching of perovskite film by electron-beam scanning. Materials Science in Semiconductor Processing, 90, 171-181. DOI : 10.1016/j.mssp.2018.10.022
- Jung, E. H., Jeon, N. J., Park, E. Y., Moon, C. S., Shin, T. J., Yang, T. Y., Noh, J. H., & Seo, J. W. (2019). Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 567, 511–515. DOI : 10.1038/s41586-019-1036-3
- Lin, Y., Zhan, X., & Yang Y. (2018). Non-Fullerene Acceptors for Organic Solar Cells. Nature Reviews Materials, 3, 18003. DOI : 10.1038/natrevmats.2017.91
- Ganesan, A. A., Houtepen, A. J., & Crisp, R. W. (2018). Quantum Dot Solar Cells: Small Beginnings Have Large Impacts. Applied Sciences, 8(10), 1867. DOI : 10.3390/app8101867
- Kim, M., Zhang, H., Qu, F., & Li, H. (2020). Enhancement in Efficiency of CIGS Solar Cell by Using a p-Si BSF Layer. Energies, 13(19), 4259. DOI : 10.3390/en13194259
- Lee, T. D., & Ebong, A. U. (2017). A review of thin film solar cell technologies and challenges. Sustainable Energy Reviews, 76, 176-190. DOI : 10.1016/j.rser.2016.12.028
- Lee, H. J., Kim, S. Y., & Moon, J. H. (2020). Flexible Perovskite Solar Cells: Achieving High Efficiency with Mechanical Durability. Science Advances, 6(34), 578-584. DOI : 10.1126/sciadv.aaz5074
- Vak, D., Gao, M., & Chesman, A. (2023). Solar Power: Printed Flexible Solar Achieves Efficiency Record. Nature Communications, 11, 1234-1240. DOI : 10.1038/s41467-023-25620-1
- Lee, J. W., Lee, H. G., Kim, T. S., & Li, S. (2024). Rigid and Soft Block-Copolymerized Conjugated Polymers Enable High-Performance Intrinsically Stretchable Organic Solar Cells. Joule, 5, 1234-1245. DOI : 10.1016/j.joule.2023.09.012
- Lee, C. H., Kim, D. R., & Zheng, X. (2014). Transfer Printing Methods for Flexible Thin Film Solar Cells: Basic Concepts and Working Principles. ACS Nano, 8, 8746-8753. DOI : 10.1021/nn503885k