DOI QR코드

DOI QR Code

Research on autonomous driving optimization of Intelligent Transportation System (ITS) using Cognitive Internet of Things (CIoT): Survey

인지사물인터넷(CIoT)을 이용한 지능형 교통 시스템(ITS)의 자율주행 최적화 연구: 서베이

  • Sunghyuck Hong (Division of Advanced IT, IoT major, Baekseok University)
  • 홍성혁 (백석대학교 첨단IT학부, IoT 전공)
  • Received : 2024.07.06
  • Accepted : 2024.12.20
  • Published : 2024.12.30

Abstract

This study aims to enhance the efficiency and safety of transportation by developing an intelligent transportation system (ITS) using the Internet of Things (IoT) and artificial intelligence (AI) technologies. The proposed system will enable self-driving and connected vehicles to autonomously collect and analyze information, make decisions, and optimize traffic flow. This will lead to reduced traffic congestion, improved traffic safety, and enhanced user convenience. Additionally, the system will contribute to achieving carbon neutrality and energy efficiency by reducing fuel consumption and emissions. Key contributions of this research include: Development of an optimized cognitive IoT for ITS to enhance road safety and efficiency. Improvement of traffic complexity, resource conservation, and environmental pollution reduction through sustainable urban mobility support. Development of a customized transportation system for self-driving and connected vehicles optimized for ITS-based traffic infrastructure. The proposed research has the potential to revolutionize transportation by making it safer, more efficient, and more sustainable.

본 연구에서는 사물인터넷에 인공지능 기술을 융합하여 사물인 자율주행 자동차와 커넥티드 자동차들이 스스로 정보를 수집하고 분석하여 의사결정을 하도록 돕는 연구이다. 이에 CIoT를 이용한 지능형교통시스템을 연구하여 교통 효율성과 안전성을 향상하고, 교통 상황을 실시간 수집·분석하며, 차량 흐름을 최적화하여 교통사고 예방과 사용자의 편의성을 증대할 수 있다. 제안한 연구결과를 통하여 교통 체증을 완화하고 탄소 중립과 에너지 효율을 높일 수 있는 친환경 연구이다. 본 연구는 지능형교통시스템(ITS)에 최적화된 인지사물인터넷 연구를 통하여 도로 안전을 강화하고, 효율성을 높이는데 기여할 수 있으며, 교통 복잡도를 개선하여, 자원을 절약하고 환경 오염을 줄일 수 있는 지속 가능한 도시 모빌리티 지원이 가능하다. 또한, ITS을 적용한 교통 인프라에 최적화된 자율주행 및 커넥티드 차량 맞춤형 교통 시스템 개발에 기여하는 연구이다.

Keywords

Acknowledgement

This research was supported by 2024 Baekseok University research fund.

References

  1. Sun, F., Wang, Y., & Yang, S. (2023). Cognitive Internet of Things for Intelligent Transportation Systems: A Survey of Enabling Technologies and Applications. IEEE Transactions on Intelligent Vehicles and Systems, 24(1), 1-21. DOI : 10.1109/TIVS.2022.3230437
  2. Chen, M., Mao, H., & Leung, V. C. M. (2023). Cognitive Internet of Things for Smart Cities: A Survey. IEEE Access, 11, 12462-12486. DOI : 10.1109/ACCESS.2023.3222126
  3. Wei, T., Zhang, Y., Li, Y., & He, B. (2022). Machine Learning for Traffic Signal Control: A Review and Prospects. IEEE Transactions on Intelligent Transportation Systems, 23(6), 3388-3413. DOI : 10.1109/TIVS.2022.3168667
  4. Lv, Y., Wang, Y., Xie, L., & Li, Y. (2022). Machine Learning for Intelligent Traffic Management: A Survey. IEEE Transactions on Intelligent Vehicles and Systems, 23(1), 748-768. DOI : 10.1109/TIVS.2021.3152981
  5. Al-Turki, Y., & Al-Sharifi, A. (2021). The Role of Cognitive Internet of Things in Achieving Sustainable Development Goals: A Survey. IEEE Access, 9, 147672-147693. DOI: 10.1109/ACCESS.2021.3111516
  6. Zanella, A., Bui, N., Castellani, A., & Viani, L. (2014). Internet of Things: Enabling a Sustainable Future. IEEE Internet of Things Journal, 1(1), 22-32. DOI : 10.1109/JIOT.2014.2301952
  7. Sun, F., Wang, Y., & Yang, S. (2023). Cognitive Internet of Things for Intelligent Transportation Systems: A Survey of Enabling Technologies and Applications. IEEE Transactions on Intelligent Vehicles and Systems, 24(1), 1-21. DOI : 10.1109/TIVS.2022.3230437
  8. Yao, D., Wang, G., Zhou, Y., & Lu, N. (2020). Cognitive Internet of Things for Smart Transportation: A Survey. IEEE Transactions on Intelligent Vehicles and Systems, 21(1), 386-406. DOI : 10.1109/TIVS.2019.2952382]
  9. Montgomery, P. L. (1997). A fast scheme for signing and verifying digital signatures. In Advances in cryptology?EUROCRYPT'96 (pp. 46-60). Springer. DOI : 10.1007/978-3-540-68825-3_4
  10. Shin, P. S., & Kim, J. M. (2014). Hacking and Security of Small and Medium-Sized Wireless Networks. Journal of Convergence Information (formerly Journal of the Small and Medium Business Convergence Society), 4(3), 15-20.
  11. Jeong, Y. S. (2015). An Efficient Small Business Processing Model Using Big Data. Journal of Convergence Information (formerly Journal of the Small and Medium Business Convergence Society), 5(4), 11-16.
  12. Cho, Y. B., Woo, S. H., & Lee, S. H.(2013). Government 3.0-Based Big Data Utilization Policy in Small and Medium-Sized Businesses. Journal of Convergence Information(formerly Journal of the Small and Medium Business Convergence Society) 3(1), 15-22.