DOI QR코드

DOI QR Code

Heat stress effects on the genetics of growth traits in Thai native chickens (Pradu Hang dum)

  • Received : 2023.05.03
  • Accepted : 2023.07.21
  • Published : 2024.01.01

Abstract

Objective: The objective of this study was to investigate the effect of heat stress on the growth traits and genetic parameters of Thai native chickens. Methods: A total of 16,487 records for growth traits of Thai native chickens between 2017 and 2022 were used in this study. Data included the body weight at birth, body weight at 4, 8, and 12 weeks of age (BW0, BW4, BW8, BW12), average daily gain during 0 to 4, 4 to 8, and 8 to 12 weeks of age (ADG0-4, ADG4-8, ADG8-12), absolute growth rate at birth, at 4, 8, and 12 weeks of age (AGR0, AGR4, AGR8, AGR12). The repeatability test day model used the reaction-norm procedure to analyze the threshold point of heat stress, rate of decline of growth traits, and genetic parameters. Results: At temperature and humidity index (THI) of 76, Thai native chickens began to lose their growth traits, which was the onset of heat stress in this study. The estimated heritability, genetic correlation between animal and heat stress effect, and correlations between the intercept and slope of the permanent environmental effects were 0.27, -0.85, and -0.83 for BW, 0.17, -0.81, and -0.95 for ADG, 0.25, -0.61, and -0.83 for AGR, respectively. Male chickens are more affected by heat stress than female chickens with a greater reduction of BW, ADG, and AGR, values equal to -9.30, -0.23, -15.21 (in males) and -6.04, -0.21, -10.10 (in females) gram per 1 level increase of THI from the THI of 76. Conclusion: The influence of thermal stress had a strong effect on the decline in growth traits and genetic parameters in Thai native chickens. This study indicated that genetic models used in conjunction with THI data are an effective method for the analysis and assessment of the effects of heat stress on the growth traits and genetics of native chickens.

Keywords

Acknowledgement

This work was funded by the Research Program of Khon Kaen University, Thailand (Grant Number: RP66-3-001).

References

  1. Wasti S, Sah N, Mishra B. Impact of heat stress on poultry health and performances, and potential mitigation strategies. Animals 2020;10:1266. https://doi.org/10.3390/ani10081266
  2. Perini F, Cendron F, Rovelli G, Castellini C, Cassandro M, Lasagna E. Emerging genetic tools to investigate molecular pathways related to heat stress in chickens: a review. Animals 2021;11:46. https://doi.org/10.3390/ani11010046
  3. Boonkum W, Duangjinda M, Kananit S, Chankitisakul V, Kenchaiwong W. Genetic effect and growth curve parameter estimation under heat stress in slow-growing Thai native chickens. Vet Sci 2021;8:297. https://doi.org/10.3390/vetsci8120297
  4. Madkour M, Salman FM, El-Wardany I, et al. Mitigating the detrimental effects of heat stress in poultry through thermal conditioning and nutritional manipulation. J Therm Biol 2022;103:103169. https://doi.org/10.1016/j.jtherbio.2021.103169
  5. Alagawany M, Qattan S, Attia YA, et al. Use of chemical nano-selenium as an antibacterial and antifungal agent in quail diets and its effect on growth, carcasses, antioxidant, immunity and caecal microbes. Animals 2021;11:3027. https://doi.org/10.3390/ani11113027
  6. Nawab A, Ibtisham F, Li G, et al. Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry. J Therm Biol 2018;78:131-9. https://doi.org/10.1016/j.jtherbio.2018.08.010
  7. Li M, Wu J, Chen Z. Effects of heat stress on the daily behavior of Wenchang chickens. Braz J Poult Sci 2015;17:559-66. https://doi.org/10.1590/1516-635X1704559-566
  8. Fathi MM, Galal A, El-Safty S, Mahrous M. Naked neck and frizzle genes for improving chickens raised under high ambient temperature: I. Growth performance and egg production. World's Poult Sci J 2013;69:813-32. https://doi.org/10.1017/S0043933913000834
  9. Decuypere E, Huybrechts LM, Kuhn ER, Tixier-Boichard M, Merat P. Physiological alterations associated with the chicken sex-linked dwarfing gene. Crit Rev Poult Biol 1991;3:191-221.
  10. Yalcin S, Testik A, Ozkan S, Settar P, Celen F, Cahaner A. Performance of naked neck and normal broilers in hot, warm, and temperate climates. Poult Sci 1997;76:930-7. https://doi.org/10.1093/ps/76.7.930
  11. Lin H, Jiao HC, Buyse J, Decuypere E. Strategies for preventing heat stress in poultry. World's Poult Sci J 2006;62:71-86. https://doi.org/10.1079/WPS200585
  12. Duangjinda M, Tunim S, Duangdaen C, Boonkum W. Hsp70 genotypes and heat tolerance of commercial and native chickens reared in hot and humid conditions. Braz J Poult Sci 2017;19:7-18. https://doi.org/10.1590/1806-9061-2016-0245
  13. Wang SH, Cheng CY, Tang PC, et al. Acute heat stress induces differential gene expressions in the testes of a broiler-type strain of Taiwan country chickens. PLoS ONE 2015;10:e0125816. https://doi.org/10.1371/journal.pone.0125816
  14. Cedraz H, Gromboni JGG, Garcia AAP Jr, et al. Heat stress induces expression of HSP genes in genetically divergent chickens. PLoS ONE 2017;12:e0186083. https://doi.org/10.1371/journal.pone.0186083
  15. Yadav AK, Tomar SS, Jha AK, Singh J. Importance of molecular markers in livestock improvement: A review. Int J Agric Innov Res 2017;5:614-21.
  16. Hill WG. Quantitative genetics in the genomics era. Curr Genomics 2012;13:196-206. https://doi.org/10.2174/138920212800543110
  17. Falconer DS, Mackay TFC. Introduction to quantitative genetics, Ed 4. Harlow, Essex, UK: Longmans Green; 1996.
  18. Aksoy T, Ilaslan Curek D, Narinc D, Onenc A. Effects of season, genotype, and rearing system on broiler chickens raised in different semi-intensive systems: performance, mortality, and slaughter results. Trop Anim Health Prod 2021;53:189. https://doi.org/10.1007/s11250-021-02629-y
  19. Loengbudnark W, Chankitisakul V, Boonkum W. The genetic impact of heat stress on the egg production of Thai native chickens (Pradu Hang dum). PLoS ONE 2023;18:e0281328. https://doi.org/10.1371/journal.pone.0281328
  20. Gonzalez Ariza A, Arando Arbulu A, Navas Gonzalez FJ, Nogales Baena S, Delgado Bermejo JV, Camacho Vallejo ME. The study of growth and performance in local chicken breeds and varieties: A review of methods and scientific transference. Animals 2021;11:2492. https://doi.org/10.3390/ani11092492
  21. Padhi MK. Importance of indigenous breeds of chicken for rural economy and their improvements for higher production performance. Scientifica 2016;2016:2604685. https://doi.org/10.1155/2016/2604685
  22. Adoligbe C, Fernandes A, Osei-Amponsah R, et al. Native chicken farming: A tool for wealth creation and food security in Benin. Int J Livest Prod 2020;11:146-62. https://doi.org/10.5897/IJLP2020.0716
  23. Halima H, Neser FWC, Van Marle-Koster E, De Kock A. Village-based indigenous chicken production system in north-west Ethiopia. Trop Anim Health Prod 2007;39:189-97. https://doi.org/10.1007/s11250-007-9004-6
  24. Baumgard LH, Rhoads Jr RP. Effects of heat stress on post-absorptive metabolism and energetics. Annu Rev Anim Biosci 2013;1:311-37. https://doi.org/10.1146/annurev-animal-031412-103644
  25. Beede DK, Collier RJ. Potential nutritional strategies for intensively managed cattle during thermal stress. J Anim Sci 1986;62:543-54. https://doi.org/10.2527/jas1986.622543x
  26. Bell, DD, Weaver Jr WD. Commercial chicken meat and egg production, 5th ed.; New York, USA: Kluwer Academic Publishers; 2002. pp. 102-3.
  27. Ewing SA, Lay Jr DC, von Borell E. Farm animal well-being-stress physiology, animal behavior, and environmental design. Upper Saddle River, NJ, USA: Prentice Hall; 1999. pp. 27-77.
  28. Novero RP, Beck MM, Gleaves EW, Johnson AL, Deshazer JA. Plasma progesterone, luteinizing hormone concentrations, and granulosa cell responsiveness in heat-stressed hens. Poult Sci 1991;70:2335-9. https://doi.org/10.3382/ps.0702335
  29. Rozenboim I, Tako E, Gal-Garber O, Proudman JA, Uni Z. The effect of heat stress on ovarian function of laying hens. Poult Sci 2007;86:1760-5. https://doi.org/10.1093/ps/86.8.1760
  30. Elnagar SA, Scheideler SE, Beck MM. Reproductive hormones, hepatic deiodinase messenger ribonucleic acid, and vasoactive intestinal polypeptide-immunoreactive cells in hypothalamus in the heat stress-induced or chemically induced hypothyroid laying hen. Poult Sci 2010;89:2001-9. https://doi.org/10.3382/ps.2010-00728
  31. Mashaly MM, Hendricks GL, Kalama MA, Gehad AE, Abbas AO, Patterson PH. Effect of heat stress on production parameters and immune responses of commercial laying hens. Poult Sci 2004;83:889-94. https://doi.org/10.1093/ps/83.6.889
  32. Deng W, Dong XF, Tong JM, Zhang Q. The probiotic Bacillus licheniformis ameliorates heat stress-induced impairment of egg production, gut morphology, and intestinal mucosal immunity in laying hens. Poult Sci 2012;91:575-82. https://doi.org/10.3382/ps.2010-01293
  33. Purswell JL, Dozier WA, Olanrewaju HA, Davis JD, Xin H, Gates RS. Effect of temperature-humidity index on live performance in broiler chickens grown from 49 to 63 days of age. IX International Livestock Environment Symposium, Valencia Conference Centre, Valencia, Spain. 2012. https://doi.org/10.13031/2013.41619
  34. National Oceanic and Atmospheric Administration. Livestock Hot Weather Stress; Washington, DC, USA: US Government Printing Office; 1976.
  35. Mignon-Grasteau S. Genetic parameters of growth curve parameters in male and female chickens. Br Poult Sci 1999;40:44-51. Br Poult Sci 1999;40:44-51. https://doi.org/10.1080/00071669987827
  36. Bohmanova J, Misztal I, Tsuruta S, Norman HD, Lawlor TJ. Short communication: Genotype by environment interaction due to heat stress. J Dairy Sci 2008;91:840-6. https://doi.org/10.3168/jds.2006-142
  37. Misztal I, Tsuruta S, Lourenco D, Aguilar I, Legarra A, Vitezica Z. Manual for BLUPF90 Family of Programs [cited 2019 Aug 9]. Available from: https://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=blupf90_all2.pdf
  38. Ravagnolo O, Misztal I. Genetic component of heat stress in dairy cattle, parameter estimation. J Dairy Sci 2000;83:2126-30. https://doi.org/10.3168/jds.S0022-0302(00)75095-8
  39. Chomchuen K, Tuntiyasawasdikul V, Chankitisakul V, Boonkum W. Comparative study of phenotypes and genetics related to the growth performance of crossbred Thai indigenous (KKU1 vs. KKU2) chickens under hot and humid conditions. Vet Sci 2022;9:263. https://doi.org/10.3390/vetsci9060263
  40. Kim KG, Choi ES, Kwon JH, Sohn SH. The effect of early chick weight on market-weight in Korean native chickens. Korean J Poult Sci 2017;44:259-65. https://doi.org/10.5536/KJPS.2017.44.4.259
  41. Tasonieroa G, Cullerea M, Baldan G, Zotte AD. Productive performances and carcase quality of male and female Italian Padovana and Polverara slow-growing chicken breeds. Ital J Anim Sci 2018;17:530-9. https://doi.org/10.1080/1828051X.2017.1364611
  42. Tongsiri S, Jeyaruban GM, Hermesch S, van der Werf JHK, Li L, Chormai T. Genetic parameters and inbreeding effects for production traits of Thai native chickens. Asian-Australas J Anim Sci 2019;32:930-8. https://doi.org/10.5713/ajas.18.0690
  43. Promket D, Ruangwittayanusorn K. The comparatives of growth and carcass performance of the Thai native chicken between economic selection (Chee KKU12) and natural selection (Chee N). Vet Integr Sci 2021;19:247-57. https://doi.org/10.12982/VIS.2021.022
  44. Manjula P, Park HB, Seo D, et al. Estimation of heritability and genetic correlation of body weight gain and growth curve parameters in Korean native chicken. Asian-Australas J Anim Sci 2018;31:26-31. https://doi.org/10.5713/ajas.17.0179
  45. Narinc D, Karaman E, Aksoy T, First MZ. Genetic parameter estimates of growth curve and reproduction traits in Japanese quail. Poult Sci 2014;93:24-30. https://doi.org/10.3382/ps.2013-03508
  46. Adeyinka IA, Oni OO, Nwagu BI, Adeyinka FD. Genetic parameter estimates for body weights of naked neck broiler chickens. Int J Poult Sci 2006;5:589-92. https://doi.org/10.3923/ijps.2006.589.592
  47. Saatchi M, Omed H, Dewi IA. genetic parameters from univariate and bivariate analyses of egg and weight traits in Japanese quail. Poult Sci 2006;85:185-90. https://doi.org/10.1093/ps/85.2.185
  48. Elston RC, Stewart J. A general model for the genetic analysis of pedigree data. Hum Hered 1971;21:523-42. https://doi.org/10.1159/000152448
  49. Renaudeau D, Collin A, Yahav S, Basilio V, Gourdine JL, Collier RJ. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 2012;6:707-28. https://doi.org/10.1017/S1751731111002448
  50. Mutibvu T, Chimonyo M, Halimani TE. Physiological responses of slow-growing chickens under diurnally cycling temperature in a hot environment. Braz Poult Sci J 2017;19:567-76. https://doi.org/10.1590/1806-9061-2017-0485
  51. Syafwan S, Kwakkel RP, Verstegen MWA. Heat stress and feeding strategies in meat-type chickens. World's Poult Sci J 2011;67:653-74. https://doi.org/10.1017/S0043933911000742
  52. Settar P, Yalcin S, Turkmut L, Ozkan S, Cahanar A. Season by genotype interaction related to broiler growth rate and heat tolerance. Poult Sci 1999;78:1353-8. https://doi.org/10.1093/ps/78.10.1353
  53. Al-Batshan HA. Performance and heat tolerance of broilers as affected by genotype and high ambient temperature. Asian-Australas J Anim Sci 2002;15:1502-6. https://doi.org/10.5713/ajas.2002.1502
  54. Aengwanich W. Effects of high environmental temperature on blood indices of Thai indigenous chickens, Thai indigenous chickens crossbred and broilers. Int J Poult Sci 2007;6:427-30. https://doi.org/10.3923/ijps.2007.427.430