DOI QR코드

DOI QR Code

Genetic diversity and phylogenetic relationship of Angus herds in Hungary and analyses of their production traits

  • Judit Marton (Hungarian Hereford, Angus, Galloway Association) ;
  • Ferenc Szabo (Szechenyi Istvan University, Albert Kazmer Faculty of Mosonmagyarovar) ;
  • Attila Zsolnai (Hungarian University of Agriculture and Life Sciences, Institute of Animal Husbandry Sciences) ;
  • Istvan Anton (Hungarian University of Agriculture and Life Sciences, Institute of Animal Husbandry Sciences)
  • Received : 2023.04.25
  • Accepted : 2023.08.14
  • Published : 2024.02.01

Abstract

Objective: This study aims to investigate the genetic structure and characteristics of the Angus cattle population in Hungary. The survey was performed with the assistance of the Hungarian Hereford, Angus, Galloway Association (HHAGA). Methods: Genetic parameters of 1,369 animals from 16 Angus herds were analyzed using the genotyping results of 12 microsatellite markers with the aid of PowerMarker, Genalex, GDA-NT2021, and STRUCTURE software. Genotyping of DNA was performed using an automated genetic analyzer. Based on pairwise identity by state values of animals, the Python networkx 2.3 library was used for network analysis of the breed and to identify the central animals. Results: The observed numbers of alleles on the 12 loci under investigation ranged from 11 to 18. The average effective number of alleles was 3.201. The overall expected heterozygosity was 0.659 and the observed heterozygosity was 0.710. Four groups were detected among the 16 Angus herds. The breeders' information validated the grouping results and facilitated the comparison of birth weight, age at first calving, number of calves born and productive lifespan data between the four groups, revealing significant differences. We identified the central animals/herd of the Angus population in Hungary. The match of our group descriptions with the phenotypic data provided by the breeders further underscores the value of cooperation between breeders and researchers. Conclusion: The observation that significant differences in the measured traits occurred among the identified groups paves the way to further enhancement of breeding efficiency. Our findings have the potential to aid the development of new breeding strategies and help breeders keep the Angus populations in Hungary under genetic supervision. Based on our results the efficient use of an upcoming genomic selection can, in some cases, significantly improve birth weight, age at first calving, number of calves born and the productive lifespan of animals.

Keywords

Acknowledgement

The authors are thankful to the Hungarian Hereford, Angus, Galloway Association for providing the samples and data for analyses.

References

  1. Macdonald J, Sinclair J. History of Aberdeen-Angus cattle. Revised edition. London, UK: Vinton & Company Ltd.; 1910. 
  2. British Cattle Movement Service [Internet]. Registrations reveal Aberdeen Angus as Britain's most popular cattle breed. [cited 2023 Feb 16]. Available from: https://www.cornwalllive.com/news/uk-world-news/registrations-reveal-aberdeen-angus-britains-6713183
  3. Kuehn L. Relationships of beef breeds using the 50k chip. Clay Center, NE, USA: USDA-ARS, US Meat Animal Research Center; 2010. pp. 1-2.
  4. Klungland H, Vage DI, Gomez-Raya L, Adalsteinsson S, Lien S. The role of melanocyte-stimulating hormone (MSH) receptor in bovine coat color determination. Mamm Genome 1995;6:636-9. https://doi.org/10.1007/BF00352371 
  5. Laudert SB. Factors that determine feedlot profit [Internet]. Beef Magazine; 2010 [cited 2014 Oct 20]. Available from: https://beefmagazine.com/sectors/feedlot/research-roundup-0601
  6. Wolfger B, Quinn C, Torres GW, Taylor M, Orsel K. Comparison of feeding behavior between black and red Angus feeder heifers. Can J Anim Sci 2016;96:404-9. https://doi.org/10.1139/cjas-2014-0161 
  7. McLean KL, Schmutz SM. Associations of melanocortin 1 receptor genotype with growth and carcass traits in beef cattle. Can J Anim Sci 2009;89:295-300. https://doi.org/10.4141/CJAS08094 
  8. Lozada-Soto EA, Maltecca C, Lu D, et al. Trends in genetic diversity and the effect of inbreeding in American Angus cattle under genomic selection. Genet Sel Evol 2021;53:50. https://doi.org/10.1186/s12711-021-00644-z 
  9. Karamfilov S. Study on the temperament of cows of the Aberdeen Angus cattle breed. Czech J Anim Sci 2022;67:8-14. https://doi.org/10.17221/88/2021-CJAS 
  10. Hine BC, Bell AM, Niemeyer DDO et al. Immune competence traits assessed during the stress of weaning are heritable and favorably genetically correlated with temperament traits in Angus cattle. J Anim Sci 2019;97:4053-65. https://doi.org/10.1093/jas/skz260 
  11. Horn A, Szmodits T, Bodo L. Experiments related to the performance of crosses among Angus and Simmental cattle (Kiserletek az angus es magyartarka szarvasmarha haszonallateloallito keresztezesere I.), Anim Breeding (Allattenyesztes), Budapest, Hungary 1959;1:43-54. https://core.ac.uk/download/pdf/185519573.pdf 
  12. Szabolcs B, Norma H, Miklos L, Ferenc S. Reproductive performance of beef cattle with different genotypes kept under extensive conditions between 1999-2011. Hung J Anim Prod 2013;62:124-35. 
  13. Zsolnai A, Fesus L. Simultaneous analysis of bovine K-casein and BLAD alleles by multiplex PCR followed by parallel digestion with two restriction enzymes. Anim Genet 1996;27:207-9. https://doi.org/10.1111/j.1365-2052.1996.tb00954.x 
  14. Anton I, Kovacs K, Fesus L, et al. Effect of DGAT1 and TG gene polymorphism on intramuscular fat and milk production traits in different cattle breeds in Hungary. Acta Vet Hung 2008;56:181-6. https://doi.org/10.1556/avet.56.2008.2.5 
  15. Anton I, Kovacs K, Hollo G, et al. Effect of leptin, DGAT1 and TG gene polymorphisms on the intramuscular fat of Angus cattle in Hungary. Livest Sci 2011;135:300-3. https://doi.org/10.1016/j.livsci.2010.07.012 
  16. Amigues Y, Boitard S, Bertrand C, et al. Genetic characterization of the Blonde d'Aquitaine cattle breed using microsatellite markers and relationship with three other French cattle populations. J Anim Breed Genet 2011;128:201-8. https://doi.org/10.1111/j.1439-0388.2010.00890.x 
  17. Szucs M, Szabo F, Ban B, et al. Assessment of genetic diversity and phylogenetic relationship of Limousin herds in Hungary using microsatellite markers. Asian-Australas J Anim Sci 2019;32:176-82. https://doi.org/10.5713/ajas.18.0164 
  18. Bhargava A, Fuentes FF. Mutational dynamics of microsatellites. Mol Biotechnol 2010;44:250-66. https://doi.org/10.1007/s12033-009-9230-4 
  19. Guichoux E, Lagache L, Wagner S, et al. Current trends in microsatellite genotyping. Mol Ecol Resour 2011;11:591-611. https://doi.org/10.1111/j.1755-0998.2011.03014.x 
  20. Mahgoub O, Babiker HA, Kadim IT, et al. Disclosing the origin and diversity of Omani cattle. Anim Genet 2013;44:336-9. https://doi.org/10.1111/j.1365-2052.2012.02399.x 
  21. Zsolnai A, Kovacs A, Anton I, et al. Comparison of different Hungarian grey herds as based on microsatellite analysis. Anim Sci Pap Rep 2014;32:121-30. 
  22. ISAG species panel [Internet]. Further information of interest concerning the ISAG comparison tests [cited 2023 Feb 16]. Available from: http://www.isag.us/comptest.asp?autotry=true&ULnotkn=true 
  23. Hubisz MJ, Falush D, Stephens M, Pritchard JK. Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 2009;9:1322-32. https://doi.org/10.1111/j.1755-0998.2009.02591.x 
  24. Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 2005;14:2611-20. https://doi.org/10.1111/j.1365-294X.2005.02553.x 
  25. Earl DA, von Holdt BM. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 2012;4:359-61. https://doi.org/10.1007/s12686-011-9548-7 
  26. Peakall R, Smouse PE. Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 2006;6:288-95. https://doi.org/10.1111/j.1471-8286.2005.01155.x 
  27. Tamura K, Stecher G, Kumar S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol Biol Evol 2021;38:3022-7. https://doi.org/10.1093/molbev/msab120 
  28. Machugh DE, Loftus RT, Bradley DG, et al. Microsatellite DNA variation within and among European cattle breeds. Proc R Soc Lond B Biol Sci 1994;256:25-31. https://doi.org/10.1098/rspb.1994.0044 
  29. Wiener P, Burton D, Williams JL. Breed relationships and definition in British cattle: a genetic analysis. Heredity (Edinb) 2004;93:597-602. https://doi.org/10.1038/sj.hdy.6800566 
  30. Alsalh MA, Bakai A, Feyzullaev FR, et al. Comparative characteristics of the genetic structure of the Syrian cattle breed compared to Holstein and Aberdeen-Angus breeds. J Adv Vet Anim Res 2021;8:339-45. https://doi.org/10.5455/javar.2021.h520 
  31. Carruthers CR, Plante Y, Schmutz SM. Comparison of Angus cattle populations using gene variants and microsatellites. Can J Anim Sci 2011;91:81-5. https://doi.org/10.4141/CJAS10058 
  32. Moreno-Sierra AM, Ceron-Munoz MF, Soto-Calderon ID. Population genetic structure of two herds of Aberdeen Angus cattle breed in Colombia. Rev Colomb Cienc Pecu 2020;34:278-90. https://doi.org/10.17533/udea.rccp.v34n4a05 
  33. Montoya AE, Ceron-Munoz MF, Moreno MA, et al. Genetic characterization of the Harton del Valle, Angus, Brangus, Holstein, and Senepol cattle breeds in Colombia, using ten microsatellite markers. Rev Colomb Cienc Pecu 2010;23:283-91.
  34. Zsolnai A, Egerszegi I, Rozsa L, et al. Position of Hungarian Merino among other Merinos, within-breed genetic similarity network and markers associated with daily weight gain. Anim Biosci 2023;36:10-8. https://doi.org/10.5713/ab.21.0459 
  35. Bailey CB, Mears GJ. Birth weight in calves and its relation to growth rates from birth to weaning and weaning to slaughter. Can J Anim Sci 1990;70:167-73. https://doi.org/10.4141/cjas90-019 
  36. Casas E, Thallman RM, Cundiff LV. Birth and weaning traits in crossbred cattle from Hereford, Angus, Norwegian Red, Swedish Red and White, Wagyu, and Friesian sires. J Anim Sci 2012;90:2916-20. https://doi.org/10.2527/jas.2011-4694 
  37. Nikolov V, Karamfilov S. Growth of female calves of the Aberdeen Angus cattle breed reared in an organic farm. Scientific Papers. Series D. Animal Science 2020;63:60-6. 
  38. Coleman L, Back P, Blair H, Lopez-Villalobos N, Hickson R. Sire effects on birth weight, gestation length, and pre-weaning growth of beef-cross-dairy calves: a case study in New Zealand. Dairy 2021;2:385-95. https://doi.org/10.3390/dairy2030030 
  39. Morris CA. A review of relationships between aspects of reproduction in beef heifers and their lifetime production: 1. Associations with fertility in the first joining season and with age at first joining. Anim Breed Abstr 1980;48:655-76. 
  40. Nunez-Dominguez R, Cundiff LV, Dickerson GE, Gregory KE, Koch RM. Lifetime production of beef heifers calving first at two vs three years of age. J Anim Sci 1991;69:3467-79.  https://doi.org/10.2527/1991.6993467x
  41. Brzakova M, Citek J, Svitakova A, Vesela Z, Vostry L. Genetic parameters for age at first calving and first calving interval of beef cattle. Animals 2020;10:2122. https://doi.org/10.3390/ani10112122 
  42. Dakay I, Marton D, Bene S, Kiss B, Zsuppan Z, Szabo F. The age at first calving and the longevity of beef cows in Hungary. Arch Tierz 2006;49:417-25. https://doi.org/10.5194/aab-49-417-2006 
  43. Szabo F, Dakay I. Estimation of some productive and reproductive effects on longevity of beef cows using survival analysis. Livest Sci 2009;122:271-5. https://doi.org/10.1016/j.livsci.2008.09.024 
  44. Wellnitz KR, Parsons CT, Dafoe JM, et al. Impacts of dam age on lifetime productivity of angus replacement beef females. Animals 2022;12:2768. https://doi.org/10.3390/ani12202768 
  45. Damiran D, Larson KA, Pearce LT, et al. Effect of calving period on beef cow longevity and lifetime productivity in western Canada. Transl Anim Sci 2018;2:S61-5. https://doi.org/10.1093/tas/txy020