DOI QR코드

DOI QR Code

Carvacrol improves blood lipid and glucose in rats with type 2 diabetes mellitus by regulating short-chain fatty acids and the GPR41/43 pathway

  • Yan Sun (Department of Endocrinology, Heji Hospital Affilicated to Changzhi Medical College) ;
  • Hai Qu (Department of General Surgery, Heji Hospital Affilicated to Changzhi Medical College) ;
  • Xiaohong Niu (Department of Endocrinology, Heji Hospital Affilicated to Changzhi Medical College) ;
  • Ting Li (Department of Endocrinology, Heji Hospital Affilicated to Changzhi Medical College) ;
  • Lijuan Wang (Department of Endocrinology, Heji Hospital Affilicated to Changzhi Medical College) ;
  • Hairui Peng (Department of Endocrinology, Heji Hospital Affilicated to Changzhi Medical College)
  • Received : 2023.05.06
  • Accepted : 2023.08.22
  • Published : 2024.01.01

Abstract

Type 2 diabetes mellitus (T2DM) is characterized by hyperglycemia and dyslipidemia. Carvacrol (CAR) has demonstrated the potential to mitigate dyslipidemia. This study aims to investigate whether CAR can modulate blood glucose and lipid levels in a T2DM rat model by regulating short-chain fatty acids (SCFAs) and the GPR41/43 pathway. The T2DM rat model was induced by a high-fat diet combined with low-dose streptozocin injection and treated with oral CAR and/or mixed antibiotics. Fasting blood glucose, oral glucose tolerance, and insulin tolerance tests were assessed. Serum lipid parameters, hepatic and renal function indicators, tissue morphology, and SCFAs were measured. In vitro, high glucose (HG)-induced IEC-6 cells were treated with CAR, and optimal CAR concentration was determined. HG-induced IEC-6 cells were treated with SCFAs or/and GPR41/43 agonists. CAR significantly reduced blood lipid and glucose levels, improved tissue damage, and increased SCFA levels in feces and GPR41/43 expression in colonic tissues of T2DM rats. CAR also attenuated HG-induced apoptosis of IEC-6 cells and enhanced GPR41/43 expression. Overall, these findings suggest that CAR alleviates blood lipid and glucose abnormalities in T2DM rats by modulating SCFAs and the GPR41/43 pathway.

Keywords

Acknowledgement

The authors express their gratitude to individuals who contributed to this work.

References

  1. Artasensi A, Pedretti A, Vistoli G, Fumagalli L. Type 2 diabetes mellitus: a review of multi-target drugs. Molecules. 2020;25:1987.
  2. Wu Y, Ding Y, Tanaka Y, Zhang W. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int J Med Sci. 2014;11:1185-1200. https://doi.org/10.7150/ijms.10001
  3. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JCN, Mbanya JC, Pavkov ME, Ramachandaran A, Wild SH, James S, Herman WH, Zhang P, Bommer C, Kuo S, Boyko EJ, Magliano DJ. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119.
  4. Landgraf R, Aberle J, Birkenfeld AL, Gallwitz B, Kellerer M, Klein H, Muller-Wieland D, Nauck MA, Reuter HM, Siegel E. Therapy of type 2 diabetes. Exp Clin Endocrinol Diabetes. 2019;127:S73-S92. https://doi.org/10.1055/a-1018-9106
  5. Brunkwall L, Orho-Melander M. The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: from current human evidence to future possibilities. Diabetologia. 2017;60:943-951. https://doi.org/10.1007/s00125-017-4278-3
  6. de Almeida Duarte JB, de Aguilar-Nascimento JE, Nascimento M, Nochi RJ Jr. Bacterial translocation in experimental uremia. Urol Res. 2004;32:266-270.
  7. Goncalves S, Pecoits-Filho R, Perreto S, Barberato SH, Stinghen AE, Lima EG, Fuerbringer R, Sauthier SM, Riella MC. Associations between renal function, volume status and endotoxaemia in chronic kidney disease patients. Nephrol Dial Transplant. 2006;21:2788-2794. https://doi.org/10.1093/ndt/gfl273
  8. Magnusson M, Magnusson KE, Sundqvist T, Denneberg T. Impaired intestinal barrier function measured by differently sized polyethylene glycols in patients with chronic renal failure. Gut. 1991;32:754-759. https://doi.org/10.1136/gut.32.7.754
  9. Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol. 2019;16:461-478.
  10. Blaak EE, Canfora EE, Theis S, Frost G, Groen AK, Mithieux G, Nauta A, Scott K, Stahl B, van Harsselaar J, van Tol R, Vaughan EE, Verbeke K. Short chain fatty acids in human gut and metabolic health. Benef Microbes. 2020;11:411-455. https://doi.org/10.3920/BM2020.0057
  11. Gowd V, Xie L, Zheng X, Chen W. Dietary fibers as emerging nutritional factors against diabetes: focus on the involvement of gut microbiota. Crit Rev Biotechnol. 2019;39:524-540. https://doi.org/10.1080/07388551.2019.1576025
  12. Ratajczak W, Ryl A, Mizerski A, Walczakiewicz K, Sipak O, Laszczynska M. Immunomodulatory potential of gut microbiomederived short-chain fatty acids (SCFAs). Acta Biochim Pol. 2019;66:1-12.
  13. Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, Fu H, Xue X, Lu C, Ma J, Yu L, Xu C, Ren Z, Xu Y, Xu S, Shen H, Zhu X, Shi Y, Shen Q, Dong W, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018;359:1151-1156. https://doi.org/10.1126/science.aao5774
  14. Parada Venegas D, De la Fuente MK, Landskron G, Gonzalez MJ, Quera R, Dijkstra G, Harmsen HJM, Faber KN, Hermoso MA. Short Chain Fatty Acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019;10:277. Erratum in: Front Immunol. 2019;10:1486.
  15. Sharifi-Rad M, Varoni EM, Iriti M, Martorell M, Setzer WN, Del Mar Contreras M, Salehi B, Soltani-Nejad A, Rajabi S, Tajbakhsh M, Sharifi-Rad J. Carvacrol and human health: a comprehensive review. Phytother Res. 2018;32:1675-1687. https://doi.org/10.1002/ptr.6103
  16. Zhao W, Deng C, Han Q, Xu H, Chen Y. Carvacrol may alleviate vascular inflammation in diabetic db/db mice. Int J Mol Med. 2020;46:977-988. Erratum in: Int J Mol Med. 2023;52:90.
  17. Bayramoglu G, Senturk H, Bayramoglu A, Uyanoglu M, Colak S, Ozmen A, Kolankaya D. Carvacrol partially reverses symptoms of diabetes in STZ-induced diabetic rats. Cytotechnology. 2014;66:251-257. https://doi.org/10.1007/s10616-013-9563-5
  18. Bajagai YS, Petranyi F, J Yu S, Lobo E, Batacan R Jr, Kayal A, Horyanto D, Ren X, M Whitton M, Stanley D. Phytogenic supplement containing menthol, carvacrol and carvone ameliorates gut microbiota and production performance of commercial layers. Sci Rep. 2022;12:11033.
  19. Zeng Z, Guo X, Zhang J, Yuan Q, Chen S. Lactobacillus paracasei modulates the gut microbiota and improves inflammation in type 2 diabetic rats. Food Funct. 2021;12:6809-6820. https://doi.org/10.1039/D1FO00515D
  20. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004;118:229-241. https://doi.org/10.1016/j.cell.2004.07.002
  21. Xiao S, Liu C, Chen M, Zou J, Zhang Z, Cui X, Jiang S, Shang E, Qian D, Duan J. Scutellariae radix and coptidis rhizoma ameliorate glycolipid metabolism of type 2 diabetic rats by modulating gut microbiota and its metabolites. Appl Microbiol Biotechnol. 2020;104:303-317. https://doi.org/10.1007/s00253-019-10174-w
  22. Li R, Ye Z, She D, Fang P, Zong G, Hu K, Kong D, Xu W, Li L, Zhou Y, Zhang K, Xue Y. Semaglutide may alleviate hepatic steatosis in T2DM combined with NFALD mice via miR-5120/ABHD6. Drug Des Devel Ther. 2022;16:3557-3572. https://doi.org/10.2147/DDDT.S384884
  23. Li M, van Esch BCAM, Henricks PAJ, Folkerts G, Garssen J. The anti-inflammatory effects of short chain fatty acids on lipopolysaccharide- or tumor necrosis factor α-stimulated endothelial cells via activation of GPR41/43 and inhibition of HDACs. Front Pharmacol. 2018;9:533.
  24. Ortiz-Martinez M, Gonzalez-Gonzalez M, Martagon AJ, Hlavinka V, Willson RC, Rito-Palomares M. Recent developments in biomarkers for diagnosis and screening of type 2 diabetes mellitus. Curr Diab Rep. 2022;22:95-115. https://doi.org/10.1007/s11892-022-01453-4
  25. He L, Yang FQ, Tang P, Gao TH, Yang CX, Tan L, Yue P, Hua YN, Liu SJ, Guo JL. Regulation of the intestinal flora: a potential mechanism of natural medicines in the treatment of type 2 diabetes mellitus. Biomed Pharmacother. 2022;151:113091.
  26. Cicalau GIP, Babes PA, Calniceanu H, Popa A, Ciavoi G, Iova GM, Ganea M, Scrobota I. Anti-inflammatory and antioxidant properties of carvacrol and magnolol, in periodontal disease and diabetes mellitus. Molecules. 2021;26:6899.
  27. Pradeepa R, Mohan V. Epidemiology of type 2 diabetes in India. Indian J Ophthalmol. 2021;69:2932-2938. https://doi.org/10.4103/ijo.IJO_1627_21
  28. Wang LL, Wang Q, Hong Y, Ojo O, Jiang Q, Hou YY, Huang YH, Wang XH. The effect of low-carbohydrate diet on glycemic control in patients with type 2 diabetes mellitus. Nutrients. 2018;10:661.
  29. Soremekun O, Karhunen V, He Y, Rajasundaram S, Liu B, Gkatzionis A, Soremekun C, Udosen B, Musa H, Silva S, Kintu C, Mayanja R, Nakabuye M, Machipisa T, Mason A, Vujkovic M, Zuber V, Soliman M, Mugisha J, Nash O, et al. Lipid traits and type 2 diabetes risk in African ancestry individuals: a Mendelian Randomization study. EBioMedicine. 2022;78:103953.
  30. Hou N, Mai Y, Qiu X, Yuan W, Li Y, Luo C, Liu Y, Zhang G, Zhao G, Luo JD. Carvacrol attenuates diabetic cardiomyopathy by modulating the PI3K/AKT/GLUT4 pathway in diabetic mice. Front Pharmacol. 2019;10:998.
  31. Zhao W, Chen L, Zhou H, Deng C, Han Q, Chen Y, Wu Q, Li S. Protective effect of carvacrol on liver injury in type 2 diabetic db/db mice. Mol Med Rep. 2021;24:741.
  32. Hadi A, Arab A, Hajianfar H, Talaei B, Miraghajani M, Babajafari S, Marx W, Tavakoly R. The effect of fenugreek seed supplementation on serum irisin levels, blood pressure, and liver and kidney function in patients with type 2 diabetes mellitus: a parallel randomized clinical trial. Complement Ther Med. 2020;49:102315.
  33. Zhou N, Zhao Y, Zhang L, Ning Y. Protective effects of black onion polysaccharide on liver and kidney injury in T2DM rats through the synergistic impact of hypolipidemic and antioxidant abilities. Int J Biol Macromol. 2022;223:378-390.  https://doi.org/10.1016/j.ijbiomac.2022.11.055
  34. Li L, Li Y, Luo J, Jiang Y, Zhao Z, Chen Y, Huang Q, Zhang L, Wu T, Pang J. Resveratrol, a novel inhibitor of GLUT9, ameliorates liver and kidney injuries in a D-galactose-induced ageing mouse model via the regulation of uric acid metabolism. Food Funct. 2021;12: 8274-8287. https://doi.org/10.1039/D1FO00538C
  35. Sampath Kumar A, Maiya AG, Shastry BA, Vaishali K, Ravishankar N, Hazari A, Gundmi S, Jadhav R. Exercise and insulin resistance in type 2 diabetes mellitus: a systematic review and meta-analysis. Ann Phys Rehabil Med. 2019;62:98-103. https://doi.org/10.1016/j.rehab.2018.11.001
  36. Medler S, Harrington F. Measuring dynamic kidney function in an undergraduate physiology laboratory. Adv Physiol Educ. 2013;37:384-391. https://doi.org/10.1152/advan.00057.2013
  37. Najafizadeh A, Kaeidi A, Rahmani M, Hakimizadeh E, Hassanshahi J. The protective effect of carvacrol on acetaminophen-induced renal damage in male rats. Mol Biol Rep. 2022;49:1763-1771. https://doi.org/10.1007/s11033-021-06985-8
  38. Zaky A, Glastras SJ, Wong MYW, Pollock CA, Saad S. The role of the gut microbiome in diabetes and obesity-related kidney disease. Int J Mol Sci. 2021;22:9641.
  39. Wang S, Liu Y, Qin S, Yang H. Composition of maternal circulating short-chain fatty acids in gestational diabetes mellitus and their associations with placental metabolism. Nutrients. 2022;14:3727.