DOI QR코드

DOI QR Code

Mechanism of Wenshen Xuanbi Decoction in the treatment of osteoarthritis based on network pharmacology and experimental verification

  • Hankun You (Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine) ;
  • Siyuan Song (Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine) ;
  • Deren Liu (Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine) ;
  • Tongsen Ren (Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine) ;
  • Song Jiang Yin (Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine) ;
  • Peng Wu (Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine) ;
  • Jun Mao (Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine)
  • Received : 2023.10.18
  • Accepted : 2023.11.14
  • Published : 2024.01.01

Abstract

To investigate the mechanism of Wenshen Xuanbi Decoction (WSXB) in treating osteoarthritis (OA) via network pharmacology, bioinformatics analysis, and experimental verification. The active components and prediction targets of WSXB were obtained from the TCMSP database and Swiss Target Prediction website, respectively. OA-related genes were retrieved from GeneCards and OMIM databases. Protein-protein interaction and functional enrichment analyses were performed, resulting in the construction of the Herb-Component-Target network. In addition, differential genes of OA were obtained from the GEO database to verify the potential mechanism of WSXB in OA treatment. Subsequently, potential active components were subjected to molecular verification with the hub targets. Finally, we selected the most crucial hub targets and pathways for experimental verification in vitro. The active components in the study included quercetin, linolenic acid, methyl linoleate, isobergapten, and beta-sitosterol. AKT1, tumor necrosis factor (TNF), interleukin (IL)-6, GAPDH, and CTNNB1 were identified as the most crucial hub targets. Molecular docking revealed that the active components and hub targets exhibited strong binding energy. Experimental verification demonstrated that the mRNA and protein expression levels of IL-6, IL-17, and TNF in the WSXB group were lower than those in the KOA group (p < 0.05). WSXB exhibits a chondroprotective effect on OA and delays disease progression. The mechanism is potentially related to the suppression of IL-17 and TNF signaling pathways and the down-regulation of IL-6.

Keywords

Acknowledgement

The third batch of peak academic talent project of Jiangsu Provincial Hospital of Traditional Chinese Medicine (second level) (No.: y2021rc20).

References

  1. McHugh D, Gil J. Senescence and aging: causes, consequences, and therapeutic avenues. J Cell Biol. 2018;217:65-77.  https://doi.org/10.1083/jcb.201708092
  2. Prieto-Alhambra D, Judge A, Javaid MK, Cooper C, Diez-Perez A, Arden NK. Incidence and risk factors for clinically diagnosed knee, hip and hand osteoarthritis: influences of age, gender and osteoarthritis affecting other joints. Ann Rheum Dis. 2014;73:1659-1664.  https://doi.org/10.1136/annrheumdis-2013-203355
  3. Chen FP, Chang CM, Hwang SJ, Chen YC, Chen FJ. Chinese herbal prescriptions for osteoarthritis in Taiwan: analysis of National Health Insurance dataset. BMC Complement Altern Med. 2014;14:91. 
  4. Salvo F, Fourrier-Reglat A, Bazin F, Robinson P, Riera-Guardia N, Haag M, Caputi AP, Moore N, Sturkenboom MC, Pariente A; Investigators of Safety of Non-Steroidal Anti-Inflammatory Drugs: SOS Project. Cardiovascular and gastrointestinal safety of NSAIDs: a systematic review of meta-analyses of randomized clinical trials. Clin Pharmacol Ther. 2011;89:855-866.  https://doi.org/10.1038/clpt.2011.45
  5. Mei ZG, Cheng CG, Zheng JF. Observations on curative effect of high-frequency electric sparkle and point-injection therapy on knee osteoarthritis. J Tradit Chin Med. 2011;31:311-315.  https://doi.org/10.1016/S0254-6272(12)60010-7
  6. Liu W, Wu YH, Liu XY, Xue B, Shen W, Yang K. Metabolic regulatory and anti-oxidative effects of modified Bushen Huoxue decoction on experimental rabbit model of osteoarthritis. Chin J Integr Med. 2013;19:459-463.  https://doi.org/10.1007/s11655-011-0727-x
  7. Wu JJ, Guo ZZ, Zhu YF, Huang ZJ, Gong X, Li YH, Son WJ, Li XY, Lou YM, Zhu LJ, Lu LL, Liu ZQ, Liu L. A systematic review of pharmacokinetic studies on herbal drug Fuzi: implications for Fuzi as personalized medicine. Phytomedicine. 2018;44:187-203.  https://doi.org/10.1016/j.phymed.2018.03.001
  8. Yoo SR, Kim Y, Lee MY, Kim OS, Seo CS, Shin HK, Jeong SJ. Gyejitang water extract exerts anti-inflammatory activity through inhibition of ERK and NF-κB pathways in lipopolysaccharide-stimulated RAW 264.7 cells. BMC Complement Altern Med. 2016;16:390. 
  9. Yang M, Ji X, Zuo Z. Relationships between the toxicities of Radix Aconiti Lateralis Preparata (Fuzi) and the toxicokinetics of its main diester-diterpenoid alkaloids. Toxins (Basel). 2018;10:391. 
  10. Kim MC, Kim DS, Kim SJ, Park J, Kim HL, Kim SY, Ahn KS, Jang HJ, Lee SG, Lee KM, Hong SH, Um JY. Eucommiae cortex inhibits TNF-α and IL-6 through the suppression of caspase-1 in lipopolysaccharide-stimulated mouse peritoneal macrophages. Am J Chin Med. 2012;40:135-149.  https://doi.org/10.1142/S0192415X12500115
  11. Feng C, Zhao M, Jiang L, Hu Z, Fan X. Mechanism of Modified Danggui Sini Decoction for knee osteoarthritis based on network pharmacology and molecular docking. Evid Based Complement Alternat Med. 2021;2021:6680637. 
  12. Xu Y, Li H, He X, Huang Y, Wang S, Wang L, Fu C, Ye H, Li X, Asakawa T. Identification of the key role of NF-κB signaling pathway in the treatment of osteoarthritis with Bushen Zhuangjin Decoction, a verification based on network pharmacology approach. Front Pharmacol. 2021;12:637273. 
  13. Zhang X, Gao R, Zhou Z, Sun J, Tang X, Li J, Zhou X, Shen T. Uncovering the mechanism of Huanglian-Wuzhuyu herb pair in treating nonalcoholic steatohepatitis based on network pharmacology and experimental validation. J Ethnopharmacol. 2022;296:115405. 
  14. Ye J, Li L, Hu Z. Exploring the molecular mechanism of action of Yinchen Wuling powder for the treatment of hyperlipidemia, using network pharmacology, molecular docking, and molecular dynamics simulation. Biomed Res Int. 2021;2021:9965906. 
  15. Chen D, Shen J, Zhao W, Wang T, Han L, Hamilton JL, Im HJ. Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res. 2017;5:16044. 
  16. Ru J, Li P, Wang J, Zhou W, Li B, Huang C, Li P, Guo Z, Tao W, Yang Y, Xu X, Li Y, Wang Y, Yang L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;6:13. 
  17. Li J, Zhao P, Li Y, Tian Y, Wang Y. Systems pharmacology-based dissection of mechanisms of Chinese medicinal formula Bufei Yishen as an effective treatment for chronic obstructive pulmonary disease. Sci Rep. 2015;5:15290. 
  18. Xu X, Zhang W, Huang C, Li Y, Yu H, Wang Y, Duan J, Ling Y. A novel chemometric method for the prediction of human oral bioavailability. Int J Mol Sci. 2012;13:6964-6982.  https://doi.org/10.3390/ijms13066964
  19. Cincilla G, Thormann M, Pons M. Structuring chemical space: similarity-based characterization of the PubChem database. Mol Inform. 2010;29:37-49.  https://doi.org/10.1002/minf.200900015
  20. Gfeller D, Grosdidier A, Wirth M, Daina A, Michielin O, Zoete V. SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res. 2014;42:W32-W38.  https://doi.org/10.1093/nar/gku293
  21. Lin Y, Hu Z. Bioinformatics analysis of candidate genes involved in ethanol-induced microtia pathogenesis based on a human genome database: GeneCards. Int J Pediatr Otorhinolaryngol. 2021;142:110595. 
  22. van Triest HJ, Chen D, Ji X, Qi S, Li-Ling J. PhenOMIM: an OMIM-based secondary database purported for phenotypic comparison. Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:3589-3592. 
  23. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607-D613.  https://doi.org/10.1093/nar/gky1131
  24. Reimand J, Isserlin R, Voisin V, Kucera M, Tannus-Lopes C, Rostamianfar A, Wadi L, Meyer M, Wong J, Xu C, Merico D, Bader GD. Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA, Cytoscape and EnrichmentMap. Nat Protoc. 2019;14:482-517.  https://doi.org/10.1038/s41596-018-0103-9
  25. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27-30.  https://doi.org/10.1093/nar/28.1.27
  26. Sherman BT, Huang da W, Tan Q, Guo Y, Bour S, Liu D, Stephens R, Baseler MW, Lane HC, Lempicki RA. DAVID Knowledgebase: a gene-centered database integrating heterogeneous gene annotation resources to facilitate high-throughput gene functional analysis. BMC Bioinformatics. 2007;8:426. 
  27. Liu Z, Li Y, Han L, Li J, Liu J, Zhao Z, Nie W, Liu Y, Wang R. PDB-wide collection of binding data: current status of the PDBbind database. Bioinformatics. 2015;31:405-412.  https://doi.org/10.1093/bioinformatics/btu626
  28. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021;49:D1388-D1395.  https://doi.org/10.1093/nar/gkaa971
  29. Seeliger D, de Groot BL. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J Comput Aided Mol Des. 2010;24:417-422.  https://doi.org/10.1007/s10822-010-9352-6
  30. Mooers BHM. Shortcuts for faster image creation in PyMOL. Protein Sci. 2020;29:268-276.  https://doi.org/10.1002/pro.3781
  31. Toro-Dominguez D, Martorell-Marugan J, Lopez-Dominguez R, Garcia-Moreno A, Gonzalez-Rumayor V, Alarcon-Riquelme ME, Carmona-Saez P. ImaGEO: integrative gene expression meta-analysis from GEO database. Bioinformatics. 2019;35:880-882.  https://doi.org/10.1093/bioinformatics/bty721
  32. Taminau J, Meganck S, Lazar C, Steenhoff D, Coletta A, Molter C, Duque R, de Schaetzen V, Weiss Solis DY, Bersini H, Nowe A. Unlocking the potential of publicly available microarray data using inSilicoDb and inSilicoMerging R/Bioconductor packages. BMC Bioinformatics. 2012;13:335. 
  33. Huang Y, Yang DD, Li XY, Fang DL, Zhou WJ. ZBP1 is a significant pyroptosis regulator for systemic lupus erythematosus. Ann Transl Med. 2021;9:1773. 
  34. Fan Y, Xia T, Shen J. The study of protective efficacy of Wenshenxuanbi Decoction on chondrocyte of knee osteoarthritis in rats. Chin J Med & Orth. 2021;6:5-8. 
  35. Ganesan R, Doss HM, Rasool M. Majoon ushba, a polyherbal compound, suppresses pro-inflammatory mediators and RANKL expression via modulating NFкB and MAPKs signaling pathways in fibroblast-like synoviocytes from adjuvant-induced arthritic rats. Immunol Res. 2016;64:1071-1086.  https://doi.org/10.1007/s12026-016-8794-x
  36. Feng K, Chen Z, Pengcheng L, Zhang S, Wang X. Quercetin attenuates oxidative stress-induced apoptosis via SIRT1/AMPK-mediated inhibition of ER stress in rat chondrocytes and prevents the progression of osteoarthritis in a rat model. J Cell Physiol. 2019;234:18192-18205.  https://doi.org/10.1002/jcp.28452
  37. Luo JS, Kammerer R, von Kleist S. Comparison of the effects of immunosuppressive factors from newly established colon carcinoma cell cultures on human lymphocyte proliferation and cytokine secretion. Tumour Biol. 2000;21:11-20.  https://doi.org/10.1159/000030106
  38. Park HG, Heo W, Kim SB, Kim HS, Bae GS, Chung SH, Seo HC, Kim YJ. Production of conjugated linoleic acid (CLA) by Bifidobacterium breve LMC520 and its compatibility with CLA-producing rumen bacteria. J Agric Food Chem. 2011;59:984-988.  https://doi.org/10.1021/jf103420q
  39. Zhang HL, Zheng L, Bian YZ, Zhang JF, Wang JH. Effects of 8-methoxypsoralen on proliferation and differentiation of cultured osteoblasts in vitro. Nat Prod Res Dev. 2011;5:927-930. 
  40. Ueland T, Yndestad A, Oie E, Florholmen G, Halvorsen B, Froland SS, Simonsen S, Christensen G, Gullestad L, Aukrust P. Dysregulated osteoprotegerin/RANK ligand/RANK axis in clinical and experimental heart failure. Circulation. 2005;111:2461-2468.  https://doi.org/10.1161/01.CIR.0000165119.62099.14
  41. Liu G, Bi Y, Wang R, Shen B, Zhang Y, Yang H, Wang X, Liu H, Lu Y, Han F. Kinase AKT1 negatively controls neutrophil recruitment and function in mice. J Immunol. 2013;191:2680-2690.  https://doi.org/10.4049/jimmunol.1300736
  42. Fukai A, Kawamura N, Saito T, Oshima Y, Ikeda T, Kugimiya F, Higashikawa A, Yano F, Ogata N, Nakamura K, Chung UI, Kawaguchi H. Akt1 in murine chondrocytes controls cartilage calcification during endochondral ossification under physiologic and pathologic conditions. Arthritis Rheum. 2010;62:826-836.  https://doi.org/10.1002/art.27296
  43. Saklatvala J. Tumour necrosis factor alpha stimulates resorption and inhibits synthesis of proteoglycan in cartilage. Nature. 1986;322:547-549.  https://doi.org/10.1038/322547a0
  44. Seguin CA, Bernier SM. TNFalpha suppresses link protein and type II collagen expression in chondrocytes: role of MEK1/2 and NF-kappaB signaling pathways. J Cell Physiol. 2003;197:356-369.  https://doi.org/10.1002/jcp.10371
  45. Haag J, Gebhard PM, Aigner T. SOX gene expression in human osteoarthritic cartilage. Pathobiology. 2008;75:195-199.  https://doi.org/10.1159/000124980
  46. Li Z, Chen S, Chen S, Huang D, Ma K, Shao Z. Moderate activation of Wnt/β-catenin signaling promotes the survival of rat nucleus pulposus cells via regulating apoptosis, autophagy, and senescence. J Cell Biochem. 2019;120:12519-12533.  https://doi.org/10.1002/jcb.28518
  47. Wang J, Wang Y, Zhang H, Gao W, Lu M, Liu W, Li Y, Yin Z. Forkhead box C1 promotes the pathology of osteoarthritis by upregulating β-catenin in synovial fibroblasts. FEBS J. 2020;287:3065-3087.  https://doi.org/10.1111/febs.15178
  48. Chen B, Deng Y, Tan Y, Qin J, Chen LB. Association between severity of knee osteoarthritis and serum and synovial fluid interleukin 17 concentrations. J Int Med Res. 2014;42:138-144.  https://doi.org/10.1177/0300060513501751
  49. Chen Y, Shou K, Gong C, Yang H, Yang Y, Bao T. Anti-inflammatory effect of geniposide on osteoarthritis by suppressing the activation of p38 MAPK signaling pathway. Biomed Res Int. 2018;2018:8384576. Erratum in: Biomed Res Int. 2022;2022:9814323. 
  50. Shi J, Zhang C, Yi Z, Lan C. Explore the variation of MMP3, JNK, p38 MAPKs, and autophagy at the early stage of osteoarthritis. IUBMB Life. 2016;68:293-302.  https://doi.org/10.1002/iub.1482
  51. Morris R, Kershaw NJ, Babon JJ. The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Sci. 2018;27:1984-2009.  https://doi.org/10.1002/pro.3519
  52. Leisengang S, Gluding D, Horster J, Peek V, Ott D, Rummel C, Schmidt MJ. Expression of adipokines and adipocytokines by epidural adipose tissue in cauda equina syndrome in dogs. J Vet Intern Med. 2022;36:1373-1381.  https://doi.org/10.1111/jvim.16483
  53. Chen H, Wu G, Sun Q, Dong Y, Zhao H. Hyperbaric oxygen protects mandibular condylar chondrocytes from interleukin-1β-induced apoptosis via the PI3K/AKT signaling pathway. Am J Transl Res. 2016;8:5108-5117. 
  54. Zhang Q, Lai S, Hou X, Cao W, Zhang Y, Zhang Z. Protective effects of PI3K/Akt signal pathway induced cell autophagy in rat knee joint cartilage injury. Am J Transl Res. 2018;10:762-770.