DOI QR코드

DOI QR Code

Finite element modelling for the static bending response of rotating FG-GPLRC beams with geometrical imperfections in thermal mediums

  • Bui Manh Cuong (Faculty of Mechanical Engineering, Le Quy Don Technical University) ;
  • Abdelouahed Tounsi (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals) ;
  • Do Van Thom (Faculty of Mechanical Engineering, Le Quy Don Technical University) ;
  • Nguyen Thi Hai Van (Faculty of Industrial Education, The University of Danang-University of Technology and Education) ;
  • Phung Van Minh (Faculty of Mechanical Engineering, Le Quy Don Technical University)
  • Received : 2022.12.28
  • Accepted : 2023.08.28
  • Published : 2024.01.25

Abstract

Beam-shaped components commonly rotate along a fixed axis when massive mechanical structures like rotors, jet engine blades, motor turbines, and rotating railway crossings perform their functions. For these structures to be useful in real life, their mechanical behavior is essential. Therefore, this is the first article to use the modified shear deformation theory type hyperbolic sine functions theory and the FEM to study the static bending response of rotating functionally graded GPL-reinforced composite (FG-GPLRC) beams with initial geometrical deficiencies in thermal media. Graphene platelets (GPLs) in three different configurations are woven into the beam's composition to increase its strength. By comparing the numerical results with those of previously published studies, we can assess the robustness of the theory and mechanical model employed in this study. Parameter studies are performed to determine the effect of various geometric and physical variables, such as rotation speed and temperature, on the bending reactions of structures.

Keywords

References

  1. Ali, G.A., Borhan, R.N. and Mehdi, M. (2021), "Buckling and vibration of porous sandwich microactuator-microsensor with three-phase carbon nanotubes/fiber/polymer piezoelectric polymeric nanocomposite face sheets", Steel Compos. Struct., 41(6), 805-820. https://doi.org/10.12989/scs.2021.41.6.805.
  2. AlSaid-Alwan, H.H.S. and Avcar, M. (2020), "Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study", Comput. Concrete, 26(3), 285-292. http://doi.org/10.12989/cac.2020.26.3.285.
  3. Attia, B., Ahmed, A.D. and Tounsi, A. (2022) "On the thermos-elastic response of FG-CNTRC cross-ply laminated plates under temperature loading using a New HSDT", J. Appl. Comput. Mech., 8(4), 1370-1386. http://doi.org/10.22055/JACM.2022.40148.3529.
  4. Arvin, H., Hosseini, S.M.H. and Kiani, Y. (2021), "Free vibration analysis of pre/post buckled rotating functionally graded beams subjected to uniform temperature rise", Thin Wall. Struct., 158, 107187. http://doi.org/10.1016/j.tws.2020.107187.
  5. Arefi, M. and Najafitabar, F. (2021), "Buckling and free vibration analyses of a sandwich beam made of a soft core with FG-GNPs reinforced composite face-sheets using Ritz method", Thin Wall. Struct., 158, 107200. http://dx.doi.org/10.1016/j.tws.2020.107200.
  6. Arshid, E. and Amir, S. (2021), "Size-dependent vibration analysis of fluid-infiltrated porous curved microbeams integrated with reinforced functionally graded graphene platelets face sheets considering thickness stretching effect", Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 235(5), 1077-1099. http://doi.org/10.1177/1464420720985556.
  7. Barati, M.R. and Shahverdi, H. (2020), "Finite element forced vibration analysis of refined shear deformable nanocomposite graphene platelet-reinforced beams", J. Braz. Soc. Mech. Sci. Eng., 42, 33. http://doi.org/10.1007/s40430-019-2118-8.
  8. Bagheri, H., Kiani, Y. and Eslami, M.R. (2019), "Asymmetric compressive stability of rotating annular plates", Eur. J. Comput. Mech., 2019, 1-21. http://doi.org/10.1080/17797179.2018.1560989.
  9. Bui, T.Q., Thom, V.D., Lan, H.T.T., Duc, H.D., Satoyuki, T., Dat, T.P., Thien-An, N.V., Tiantang, Y. and Sohichi, H. (2016), "On the high temperature mechanical behaviors analysis of heated functionally graded plates using FEM and a new third-order shear deformation plate theory", Compos. Part B Eng., 92, 218-241. http://doi.org/10.1016/j.compositesb.2016.02.048.
  10. Chen, W.Q., Lu, C.F. and Bian, Z.G. (2004), "A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation", Appl. Math. Model., 28(10), 877-890. http://doi.org/10.1016/j.apm.2004.04.001.
  11. Chen, D., Feng, K. and Zheng, S., (2019), "Flapwise vibration analysis of rotating composite laminated Timoshenko microbeams with geometric imperfection based on a remodified couple stress theory and isogeometric analysis", Eur. J. Mech. A/Solids, 76, 25-35. http://doi.org/10.1016/j.euromechsol.2019.03.002.
  12. Cho, J.R. (2022), "Buckling analysis of functionally graded plates resting on elastic foundation by natural element method", Steel Compos. Struct., 44(2), 171-181. https://doi.org/10.12989/scs.2022.44.2.171.
  13. Cuong-Le, T., Khuong, D.N., Nguyen-Trong, N., Samir, K., Nguyen-Xuan, H., Abdel-Wahab, M. (2021), "A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA", Compos. Struct., 259, 113216. https://doi.org/10.1016/j.compstruct.2020.113216.
  14. Cuong-Le, T., Nguyen-Trong, N., Truong, H.V., Samir, K. and Magd, A.W. (2022), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput., 38, 449-460. https://doi.org/10.1007/s00366-020-01154-0.
  15. Dao, M.T., Do, V.T., Phung, V.M., Nguyen, C.T., Tran, N.D. and Dao, N.M. (2023), "The application of the nonlocal theory and various shear strain theories for bending and free vibration analysis of organic nanoplates", Mech. Based Des. Struct. Mach., 2023. https://doi.org/10.1080/15397734.2023.2186893.
  16. Date, A. (2009), "Static analysis of a functionally graded beam under a uniformly distributed load by Ritz method", Int. J. Eng. Appl. Sci., 1(3), 1-11.
  17. Ding, H.X., Zhang, Y.W. and She, G.L. (2022), "On the resonance problems in FG-GPLRC beams with different boundary conditions resting on elastic foundations", Comput. Concrete, 30(6), 433-443. http://doi.org/10.12989/cac.2022.30.6.433.
  18. Duc, H.D., Ashraf, M.Z. and Do, V.T. (2022), "Finite element modeling of free vibration of cracked nanoplates with flexoelectric effects", The Eur. Phys. J. Plus., 137, 447. https://doi.org/10.1140/epjp/s13360-022-02631-9.
  19. Dung, N.T., Minh, P.V., Hung, H.M. and Tien, D.M. (2021), "The third-order shear deformation theory for modeling the static bending and dynamic responses of piezoelectric bidirectional functionally graded plates", Adv. Mater. Sci. Eng., 2021, 5520240. http://doi.org/10.1155/2021/5520240.
  20. Doan, H.D., Do, V.T., Pham, H.C., Phung, V.M. and Nguyen, X.N. (2022), "Vibration and static buckling behavior of variable thickness flexoelectric nanoplates", Mech. Based Des. Struct. Mach., 2022, 2088558. https://doi.org/10.1080/15397734.2022.2088558.
  21. Do, T.V., Doan, D.H., Duc, N.D. and Bui, T.Q. (2017), "Phase-field thermal buckling analysis for cracked functionally graded composite plates considering neutral surface", Compos. Struct., 182, 542-548. http://doi.org/10.1016/j.compstruct.2017.09.059.
  22. Ismail, E., Mashhour, A.A., Mohamed, A.E. and Alaa, A.A. (2022), "Dynamic response of FG porous nanobeams subjected thermal and magnetic fields under moving load", Steel Compos. Struct., 42(6), 805-826. https://doi.org/10.12989/scs.2022.42.6.805.
  23. Jinxuan, Z., Zohre, M., Maryam, S. and Mohamed, A.K. (2022), "ntelligent modeling to investigate the stability of a two-dimensional functionally graded porosity-dependent nanobeam", Comput. Concrete, 30(2), 85-97. https://doi.org/10.12989/cac.2022.30.2.085.
  24. Jin-Rae, C. (2022), "Nonlinear bending analysis of functionally graded CNT-reinforced composite plates", Steel Compos. Struct., 42(1), 23-32. https://doi.org/10.12989/scs.2022.42.1.023.
  25. Gui-Lin, S., Hao-Xuan, D. and Yi-Wen Z. (2022), "Wave propagation in a FG circular plate via the physical neutral surface concept", Struct. Eng. Mech., 82(2), 225-232. https://doi.org/10.12989/sem.2022.82.2.225.
  26. Kamran, B. and Moradi-Dastjerdi, R. (2022), "Thermal buckling resistance of a lightweight lead-free piezoelectric nanocomposite sandwich plate", Adv. Nano Res., 12(6), 593-603. https://doi.org/10.12989/anr.2022.12.6.593.
  27. Kiani, Y. (2021), "Interaction of thermal and mechanical waves in axisymmetric generalized thermoelasticity of rotating disk", Waves Random Complex Media, 31(3), 420-434. https://doi.org/10.1080/17455030.2019.1595769.
  28. Khazaei, P. and Mohammadimehr, M. (2020), "Vibration analysis of porous nanocomposite viscoelastic plate reinforced by FGSWCNTs based on a nonlocal strain gradient theory", Comput. Concrete, 26(1), 31-52. http://doi.org/10.12989/cac.2020.26.1.031.
  29. Khosravi, S., Arvin, H. and Kiani, Y. (2019a), "Interactive thermal and inertial buckling of rotating temperature-dependent FGCNT reinforced composite beams", Compos. Part B Eng., 175, 107178. http://dx.doi.org/10.1016/j.compositesb.2019.107178.
  30. Khosravi, S., Hadi, A. and Kiani, Y. (2019b), "Vibration analysis of rotating composite beams reinforced with carbon nanotubes in thermal environment", Int. J. Mech. Sci., 164, 105187. https://doi.org/10.1016/j.ijmecsci.2019.105187.
  31. Kumar, H.S.N. and Subhaschandra, K. (2022), "Nonlinear analysis of two-directional functionally graded doubly curved panels with porosities", Struct. Eng. Mech., 82(4), 477-490. https://doi.org/10.12989/sem.2022.82.4.477.
  32. Hosseini, S.M.H., Arvin, H. and Kiani, Y. (2022), "On buckling and post-buckling of rotating clamped-clamped functionally graded beams in thermal environment", Mech. Based Des. Struct. Mach., 50(8), 2779-2794. https://doi.org/10.1080/15397734.2020.1784205.
  33. Hoang-Nam, N., Tan-Y, N., Ke, V.T., Thanh, T.T., Truong-Thinh, N., Van-Duc, P. and Thom, V.D (2019), "A finite element model for dynamic analysis of triple-layer composite plates with layers connected by shear connectors subjected to moving load", Mater., 12(4), 598. https://doi.org/10.3390/ma12040598.
  34. Hoang, N.N., Tran, T.H., Pham, V.V. and Do, V.T. (2019), "An efficient beam element based on Quasi-3D theory for static bending analysis of functionally graded beams", Mater., 12(13), 2198. https://doi.org/10.3390/ma12132198.
  35. Zhou, L. and Najjari, Y. (2022), "Analytical solution of buckling problem in plates reinforced by Graphene platelet based on third order shear deformation theory", Steel Compos. Struct., 43(6), 725-734. https://doi.org/10.12989/scs.2022.43.6.725.
  36. Liu, D. (2020), "Free vibration of functionally graded graphene platelets reinforced magnetic nanocomposite beams resting on elastic foundation", Nanomater., 10(11), 2193. http://doi.org/10.3390/nano10112193.
  37. Manickam, G., Gupta, P., De, S., Rajamohan, V. and Polit, O. (2022), "Nonlinear flexural free vibrations of size-dependent graphene platelets reinforced curved nano/micro beams by finite element approach coupled with trigonometric shear flexible theory", Mech. Adv. Mater. Struct., 29(17), 2489-2515. http://doi.org/10.1080/15376494.2020.1866723.
  38. Mashhour, A.A., Ismail, E., Alaa, A.A, Azza, M.A. and Mohamed, A.E. (2022), "Dynamic analysis of functionally graded (FG) nonlocal strain gradient nanobeams under thermo-magnetic fields and moving load", Adv. Nano Res., 12(3), 231-251. https://doi.org/10.12989/anr.2022.12.3.231.
  39. Minh, T.T. and Cuong-Le, T. (2022), "A nonlocal IGA numerical solution for free vibration and buckling analysis of porous sigmoid functionally graded (P-SFGM) nanoplate", Int. J. Struct. Stab. Dyn., 22(16), 2250193. https://doi.org/10.1142/S0219455422501930.
  40. Mojiri, H.R. and Salami, S.J. (2020), "Free vibration and dynamic transient response of functionally graded composite beams reinforced with graphene nanoplatelets (GPLs) resting on elastic foundation in thermal environment", Mech. Based Des. Struct. Mach., 2020, 1872-1892. http://dx.doi.org/10.1080/15397734.2020.1766492.
  41. Mohammadimehr, M., Mehrabi, M. and Mousavinejad, F.S. (2020), "Magneto-mechanical vibration analysis of single-/three-layered micro-Timoshenko porous beam and graphene platelet as reinforcement based on modified strain gradient theory and differential quadrature method", J. Vib. Control, 27(15-16), 2020. http://doi.org/10.1177/1077546320949083.
  42. Nam, N.H., Tan, T.C., Luat, D.T., Phan, V.D., Thom, D.V. and Minh, P.V. (2019), "Research on the buckling behavior of functionally graded plates with stiffeners based on the third-order shear deformation theory", Mater. (Basel), 12(8), 1262. http://doi.org/10.3390/ma12081262.
  43. Nematollahi, M.S., Mohammadi, H., Dimitri, R. and Tornabene, F. (2020), "Nonlinear vibration of functionally graded graphene nanoplatelets polymer nanocomposite sandwich beams", Appl. Sci., 10(16), 5669. http://doi.org/10.3390/app10165669.
  44. Nguyen, T.D., Minh, P.V., Hoang, C.P, Tam, T.D., Nhung, N.T.C. and Dung, N.T. (2021), "Bending of symmetric sandwich FGM beams with shear connectors", Math. Probl. Eng., 2021, 7596300. http://doi.org/10.1155/2021/7596300.
  45. Nguyen, C.T., Do, V.T., Pham, H.C., Ashraf, M.Z., Duc, H.D. and Phung, V.M. (2023), "Finite element modeling of the bending and vibration behavior of three-layer composite plates with a crack in the core layer", Compos. Struct., 305, 116529. https://doi.org/10.1016/j.compstruct.2022.116529.
  46. Pham, T.D., Doan, T.L. and Do, V.T. (2016), "Free vibration of functionally graded sandwich plates with stiffeners based on the third-order shear deformation theory", Viet. J. Mech., 38(2), 103-122. https://doi.org/10.15625/0866-7136/38/2/6730.
  47. Phung, M.V., Nguyen, D.T., Doan, L.T., Nguyen, D.V. and Duong, T.V. (2022), "Numerical investigation on static bending and free vibration responses of two-layer variable thickness plates with shear connectors", Iran. J. Sci. Technol. Trans. Mech. Eng., 46, 1047-1065. http://doi.org/10.1007/s40997-021-00459-9.
  48. Quang, D.V., Doan T.N., Luat, D.T. and Thom, D.V. (2022), "Static analysis and boundary effect of FG-CNTRC cylindrical shells with various boundary conditions using quasi-3D shear and normal deformations theory", Struct., 44, 828-850. https://doi.org/10.1016/j.istruc.2022.08.039.
  49. Ruihua, Z. and Yiqing, C. (2022), "Computational mathematical modeling of the nonlinear vibration characteristics of AFG truncated conical nano pipe based on the nonlocal strain gradient theory", Steel Compos. Struct., 42(5), 599-615. https://doi.org/10.12989/scs.2022.42.5.599.
  50. Song, M., Gong, Y., Yang, J., Zhu, W. and Kitipornchai, S. (2020), "Nonlinear free vibration of cracked functionally graded graphene platelet-reinforced nanocomposite beams in thermal environments", J. Sound Vib., 468, 115115. http://doi.org/10.1016/j.jsv.2019.115115.
  51. Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mech., 94(3-4), 195-220. http://doi.org/10.1007/BF01176650.
  52. Tabatabaei-Nejhad, S.Z., Malekzadeh, P. and Eghtesad, M. (2020), "Out-of-plane vibration of laminated FG-GPLRC curved beams with piezoelectric layers", Thin Wall. Struct., 150, 106678. http://doi.org/10.1016/j.tws.2020.106678.
  53. Timpshenko, S.P. and Gere, J.M. (1985), Theory of Elastic Stability, McGraw-Hill, London, UK.
  54. Timesli, A. (2020), ''Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation'', Comput. Concrete, 26(1), 53-62. https://doi.org/10.12989/cac.2020.26.1.053.
  55. Tinh, Q.B., Duc, H.D., Thom, V.D., Sohichi, H. and Nguyen, D.D. (2016), "High frequency modes meshfree analysis of Reissner-Mindlin plates", J. Sci. Adv. Mater. Dev., 1(3), 400-412. https://doi.org/10.1016/j.jsamd.2016.08.005.
  56. Thai, H.T. and Choi, D.H. (2013), "Finite element formulation of various four unknown shear deformation theories for functionally graded plates", Finite Elem. Anal. Des., 75, 50-61. http://doi.org/10.1016/j.finel.2013.07.003.
  57. Thai, L.M., Luat, D.T., Phung, V.B., Minh, P.V. and Thom, D.V. (2022), "Finite element modeling of mechanical behaviors of piezoelectric nanoplates with flexoelectric effects", Arch. Appl. Mech., 92(1), 163-182. http://doi.org/10.1007/s00419-021-02048-3.
  58. Thom, D.V., Duc, D.H., Minh, P.V. and Tung, N.S. (2020), "Finite element modelling for free vibration response of cracked stiffened Fgm plates", Viet. J. Sci. Technol., 58(1), 119-129. http://doi.org/10.15625/2525-2518/58/1/14278.
  59. Tho, N.C., Thanh, N.T., Tho, T.D., Minh, P.V. and Hoa, L.K. (2021), "Modelling of the flexoelectric effect on rotating nanobeams with geometrical imperfection", J. Braz. Soc. Mech. Sci. Eng., 43(11), 510. http://doi.org/10.1007/s40430-021-03189-w.
  60. Thom, V.D., Duc, H.D., Nguyen, C.T. and Nguyen, D.D. (2022), "Thermal buckling analysis of cracked functionally graded plates", Int. J. Struct. Stab. Dyn., 22(8), 2250089. https://doi.org/10.1142/S0219455422500894.
  61. Vu, H.N., Pham, V.V., Nguyen, V.C., Do, V.T. and Tran, T.H. (2019), "A new beam model for simulation of the mechanical behaviour of variable thickness functionally graded material beams based on modified first order shear deformation theory", Mater., 12(3), 404. https://doi.org/10.3390/ma12030404.
  62. Vu, X.N., Qui, X.L., Tuan, A.L., Thao, D.N., Takayuki, S. and Van, H.L. (2022), "A novel coupled finite element method for hydroelastic analysis of FG-CNTRC floating plates under moving loads", Steel Compos. Struct., 42(2), 243-256. https://doi.org/10.12989/scs.2022.42.2.243.
  63. Yaylaci, M., Adiyaman, G., Oner, E. and Birinci, A. (2021), "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concrete, 27(3), 199-210. http://doi.org/10.12989/cac.2021.27.3.199.
  64. Yas, M.H. and Rahimi, S. (2020), "Thermal vibration of functionally graded porous nanocomposite beams reinforced by graphene platelets", Appl. Math. Mech., 41(8), 1209-1226. http://doi.org/10.1007/s10483-020-2634-6.
  65. Yu, T., Tinh, Q.B., Shuohui, Y., Duc, H.D., Wu, C.T., Thom, V.D. and Satoyuki, T. (2016), "On the thermal buckling analysis of functionally graded plates with internal defects using extended isogeometric analysis", Compos. Struct., 136, 684-695. http://doi.org/10.1016/j.compstruct.2015.11.002.
  66. Zhang, L.H., Lai, S.K., Wang, C. and Yang, J. (2021), "DSC regularized Dirac-delta method for dynamic analysis of FG graphene platelet-reinforced porous beams on elastic foundation under a moving load", Compos. Struct., 255, 112865. http://doi.org/10.1016/j.compstruct.2020.112865.
  67. Zhenming, C., Xin, C., Elhosiny, A.H. and Sami, M. (2022), "Investigating nonlinear vibration behavior of sandwich panels with multi-scale skins based on a numerical method", Struct. Eng. Mech., 83(3), 283-292. https://doi.org/10.12989/sem.2022.83.3.283.
  68. Wang, C.M., Lam, K.Y. and He, X.Q. (1998), "Exact solutions for Timoshenko beams on elastic foundations using Green's functions", Mech. Struct. Mach., 26(1), 101-113. http://doi.org/10.1080/08905459808945422.
  69. Wang, Y., Xie, K. and Fu, T. (2020), "Vibration analysis of functionally graded graphene oxide-reinforced composite beams using a new Ritz-solution shape function", J. Braz. Soc. Mech. Sci. Eng., 42, 180. http://doi.org/10.1007/s40430-020-2258-x.
  70. Wu, H., Zhu, J., Kitipornchai, S., Wang, Q., Ke, L.L. and Yang, J. (2020), "Large amplitude vibration of functionally graded graphene nanocomposite annular plates in thermal environments", Compos. Struct., 239, 112047. http://doi.org/10.1016/j.compstruct.2020.112047.