DOI QR코드

DOI QR Code

Experimental study on replaceable precast concrete beam-column connections

  • Seung-Ho Choi (Department of Disaster Management and Fire Safety Engineering, University of Seoul) ;
  • Sang-Hoon Lee (Department of Architectural Engineering and the Smart City Interdisciplinary Major Program, University of Seoul) ;
  • Jae-Hyun Kim (Department of Architectural Engineering, University of Seoul) ;
  • Inwook Heo (Department of Architectural Engineering, University of Seoul) ;
  • Hoseong Jeong (Department of Architectural Engineering, University of Seoul) ;
  • Kang Su Kim (Department of Architectural Engineering and the Smart City Interdisciplinary Major Program, University of Seoul)
  • Received : 2023.03.15
  • Accepted : 2023.12.19
  • Published : 2024.01.25

Abstract

The purpose of this study was to develop a system capable of restoring the seismic performance of a precast concrete (PC) connection damaged by an earthquake. The developed PC connection consists of a top-and-seat angle, post-tensioning (PT) tendons, and U-shaped steel. The PC beam can be replaced by cutting the PT tendons in the event of damage. In addition, the seismic performance of the developed PC beam-column connection was evaluated experimentally. A PC beam-column connection specimen was fabricated, and a quasistatic cyclic loading test was conducted to a maximum drift ratio of 2.3%. Subsequently, the PC beam was replaced by a new PC beam, and the repaired PC connection was loaded to a maximum drift ratio of 5.1%. The structural performance of the repaired PC connection was then compared with that of the original PC connection. The difference in the load at the drift ratio of 2.3% between the original and the repaired PC specimens was only 0.2%. The residual drift ratio in the repaired PC specimen did not exceed 1.0% at the 2.0 % drift ratio cycles, which satisfies the life safety performance level specified in ACI 374.2R-13. When the developed PC connection system is used, structural performance can be restored by rapidly replacing the damaged elements.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1I1A1A01040337).

References

  1. ACI Committee 318 (2019), Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19), American Concrete Institute, Farmington Hills, MI, USA. 
  2. ACI Committee 374 (2005), Acceptance Criteria for Moment Frames Based on Structural Testing and Commentary (ACI 374.1-05), American Concrete Institute, Farmington Hills, MI, USA. 
  3. ACI Committee 374 (2013), Guide for Testing Reinforced Concrete Structural Elements under Slowly Applied Simulated Seismic Loads (ACI 374.2R-13), American Concrete Institute, Farmington Hills, MI, USA. 
  4. Barbhuiya, S. and Choudhury, A. M. (2015), "A study on the size effect of RC beam-column connections under cyclic loading", Eng. Struct. 95, 1-7. https://doi.org/10.1016/j.engstruct.2015.03.052. 
  5. Choi, S.H., Kim, J.H., Jeong, H. and Kim, K.S. (2022a), "Seismic behavior of beam-column joints with different concrete compressive strengths", J. Build. Eng., 52, 104484. https://doi.org/10.1016/j.jobe.2022.104484. 
  6. Choi, S.H., Heo, I., Darkhanbat, K., Choi, S.M. and Kim, K.S. (2022b), "Experimental and numerical study on pre-cambered deep deck-plate system", Comput. Concrete, 30(6), 445-453. https://doi.org/10.12989/cac.2022.30.6.445. 
  7. Choi, S.H., Hwang, J.H., Han, S.J., Joo, H.E., Kim, J.H. and Kim, K.S. (2021), "Experimental study of punching shear in post-tensioned slabs with unbonded tendons", Struct. Eng. Mech., 79(4), 507-516. https://doi.org/10.12989/sem.2021.79.4.507. 
  8. Choi, S.H., Hwang, J.H., Lee, D.H., Kim, K.S., Zhang, D. and Kim, J.R. (2018), "Experimental study on RC frame structures strengthened by externally-anchored PC wall panels", Comput. Concrete, 22(4), 383-393. https://doi.org/10.12989/cac.2018.22.4.383. 
  9. Choi, S.H., Heo, I., Kim, J.H., Jeong, H., Lee, J.Y. and Kim, K.S. (2022c), "Flexural behavior of post-tensioned precast concrete girder at negative moment region," Comput. Concrete, 30(1), 75-83. https://doi.org/10.12989/cac.2022.30.1.075. 
  10. Frappa, G. and Pauletta, M. (2022), "Seismic retrofitting of a reinforced concrete building with strongly different stiffness in the main directions", Proceedings of 14th fib International PhD Symposium in Civil Engineering, Rome, Italy, September. 
  11. Han, S.J., Kim, J.H., Choi, S.H., Heo, I. and Kim, K.S. (2022), "Web-shear strength of steel-concrete composite beams with prestressed wide flange and hollowed steel webs: Experimental and practical approach", Struct. Eng. Mech., 84(3), 311-321. https://doi.org/10.12989/sem.2022.84.3.311. 
  12. Hwang, J.H., Choi, S.H., Lee, D.H., Kim, K.S. and Kwon, O.S. (2021), "Seismic behaviour of post-tensioned precast concrete beam-column connections", Mag. Concrete Res., 73(9), 433-447. https://doi.org/10.1680/jmacr.19.00083. 
  13. Jin, K., Kitayama, K., Song, S. and Kanemoto, K. (2016), "Shear capacity of precast prestressed concrete beam-column joint assembled by unbonded tendon", ACI Struct. J., 114(6), 51-61. https://doi.org/10.14359/51689148. 
  14. Karimi Pour, A. (2022), "Experimental and numerical evaluation of steel fibres RC patterns influence on the seismic behaviour of the exterior concrete beam-column connections", Eng. Struct., 263, 114358. https://doi.org/10.1016/j.engstruct.2022.114358. 
  15. Kim, J.H., Choi, S.H., Han. S.J., Hwang, J.H., Jeong, H. and Kim, K.S. (2023), "Effect of beam elongation phenomenon on lateral load resistance of RC frame", J. Build. Eng., 65, 105764. https://doi.org/10.1016/j.jobe.2022.105764. 
  16. Kim, J.H., Choi, S.H., Hwang, J.H., Jeong, H., Han, S.J. and Kim, K.S. (2021), "Experimental study on lateral behavior of post-tensioned precast beam-column joints", Struct., 33, 841-854. https://doi.org/10.1016/j.istruc.2021.04.095. 
  17. Kim, J.H., Lee, D., Choi, S.H., Jeong, H. and Kim, K.S. (2022), "Seismic performance of precast multi-span frame system integrated by unbonded tendons", ACI Struct. J., 119(5), 193-206. https://doi.org/10.14359/51734801. 
  18. Li, B., Kulkarni, S.A. and Leong, C.L. (2009), "Seismic performance of precast hybrid-steel concrete connections", J. Earthq. Eng., 13(5), 667-689. https://doi.org/10.1080/13632460902837793. 
  19. Li, X., Wu, G., Kurama, Y.C. and Cui, H. (2020), "Experimental comparisons of repairable precast concrete shear walls with a monolithic cast-in-place wall", Eng. Struct., 216, 110671. https://doi.org/10.1016/j.engstruct.2020.110671. 
  20. Lim, W.Y., Kang, T.H.K. and Hong, S.G. (2018), "Effect of reinforcement details on seismic behavior of precast concrete wall-steel coupling beam systems", ACI Struct. J., 115(6), 1751-1763. https://doi.org/10.14359/51702414. 
  21. Lu, C., Dong, B.Q., Pan, J.L., Shan, Q.F., Hanfi, A. and Yin, W. (2018) "An investigation on the behavior of a new connection for precast structures under reverse cyclic loading", Eng. Struct., 169, 131-140. https://doi.org/10.1016/j.engstruct.2018.05.041. 
  22. Miani, M., Di Marco, C., Frappa, G. and Pauletta, M. (2020), "Effects of dissipative systems on the seismic behavior of irregular buildings-Two case studies", Build., 10, 202. https://doi.org/10.3390/buildings10110202. 
  23. Oesterle, R.G., Fiorato, A.E., Johal, L.S., Carpenter, J.E., Russell, H.G. and Corley, W.G. (1976), "Earthquake resistant structural walls - Tests of isolated walls", PB271-467; Construction Technology Laboratories, Portland Cement Association. 
  24. Ozden, S., Akguzel, U. and Ozturan, T. (2011), "Seismic strengthening of infilled reinforced concrete frames with composite matrials", ACI Struct., 108(4), 414-422. https://doi.org/10.14359/51682981. 
  25. Paulay, T., Park, R. and Priestley, M.J.N. (1978), "Reinforced concrete beam-column joints under seismic actions", ACI Struct. J., 75(11), 585-593. https://doi.org/10.14359/10971. 
  26. Pauletta. M., Marco, C.D., Frappa, G., Miani, M., Campione, G. and Russo, G. (2021), "Seismic behavior of exterior RC beam-column joints without code-specified ties in the joint core", Eng. Struct., 228, 111542. https://doi.org/10.1016/j.engstruct.2020.111542. 
  27. Parastesh, H., Hajirasouliha, I. and Ramezani, R. (2014), "A new ductile moment-resisting connection for precast concrete frames in seismic regions: An experimental investigation", Eng. Struct., 270, 144-157. https://doi.org/10.1016/j.engstruct.2014.04.001. 
  28. Peloso, S., Casarotti, C., Dacarro, F. and Sinopoli, G. (2020), "Response of an existing two-storey RC frame designed for gravity loads: In situ pushover tests and numerical analyses", Build., 10(12), 227. https://doi.org/10.3390/buildings10120227. 
  29. Tazarv, M., Boudaqa, A. and Tuhin, I. (2020), "Repairable precast moment-resisting buildings: Part I-Experimental investigations", ACI Struct. J., 117(6), 147-170. https://doi.org/10.14359/51728061. 
  30. Yu, Z., Lv, X., Ding, F. and Peng, X. (2019), "Seismic performance of precast concrete columns with improved U-type reinforcement ferrule connections", Int. J. Concrete Struct. Mater., 13, 1-18. https://doi.org/10.1186/s40069-019-0368-6. 
  31. Zhang, X. and Li, B. (2020), "Seismic performance of RC beam-column joints constructed with engineered cementitious composites", J. Struct. Eng., 146(12), 04020271. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002824.
  32. Zhang, Y. and Li, D. (2021), "Seismic behavior and design of repairable precast RC beam-concrete-filled square steel tube column joints with energy-dissipating bolts", J. Build. Eng., 44, 103419. https://doi.org/10.1016/j.jobe.2021.103419.