DOI QR코드

DOI QR Code

Analysis of Vibration Characteristics and Stratification Potential Due to Temperature Changes in Natural Gas Pipelines Supplied with Hygrogen-mixtured Gas Through Simulation

시뮬레이션을 기반으로 수소 혼입 가스가 공급되는 천연가스 배관의 진동성 검토와 온도변화로 인한 성층화 가능성 연구

  • Kyung-Jun Shin (Dept. of Chemical Engineering, Graduate School, Soongsil University) ;
  • Sang-Wook Han (Dept. of Chemical Engineering, Graduate School, Soongsil University) ;
  • Dwi Agus Prasetyo (Dept. of Chemical Engineering, Graduate School, Soongsil University) ;
  • Byung-Jick Kim (Dept. of Chemical Engineering, Graduate School, Soongsil University)
  • Received : 2024.08.07
  • Accepted : 2024.11.13
  • Published : 2024.12.31

Abstract

Hydrogen energy is a type of energy that is in the spotlight due to its environmental friendliness and sustainability. Currently, it is difficult to use high purity hydrogen, so hydrogen will be mixed into natural gas before using pure hydrogen directly. This can greatly contribute to the national determined contribution by significantly reducing carbon emissions by reducing natural gas usage. However, due to differences in some of the properties of the two fluids, when mixed, changes that cannot be ignored compared to the properties of existing natural gas may occur. In this study, the one of focus was on the vibration of the fluid passing through the elbow, and the other focus is gas stratification. If the vibration of the fluid occurs larger than before, it can have a greater impact on the pipe, which can affect stability when using existing pipe infrastructure. This paper uses simulation to compare stability through observation of changes in fluid vibration, assuming that the mixed gas passes through the elbow. additionally, the study examines the stratification of the mixed gas flowing through the pipe.

수소 에너지는 친환경성과 지속 가능성으로 주목 받는 에너지의 한 종류이다. 현재는 고순도의 수소를 사용하기 어려워 순수 수소를 직접 사용하기 전 천연가스에 수소를 혼입해 사용하게 된다. 이는 천연가스 사용량을 줄여 탄소 배출을 크게 줄임으로써 국가의 탄소중립목표달성에 크게 기여할 수 있다. 그러나 두 유체의 특성 차이로 인해 혼합되면 기존 천연가스의 특성과 비교하여 무시할 수 없는 변화가 발생 할 수 있다. 본 연구에서는 엘보우를 통과하는 유체의 진동을 검토하고, 혼입 가스의 성층화 가능성을 검토하였다. 유체의 진동이 이전보다 크게 발생하면 파이프에 큰 영향을 미칠 수 있고 이는 기존 파이프 파인을 사용할 때 안정성에 영향을 미칠 수 있다. 본 논문에서는 혼합가스가 엘보우를 통과한다고 가정하여 시뮬레이션을 통해 유체 진동의 변화를 관찰하여 안정성을 비교한다. 또한, 파이프를 통해 흐르는 혼합가스의 성층화를 검토한다.

Keywords

References

  1. Choi.M.J., "Effects of curved Pipe Geometry and Inside Fluid Flow on the Vibrational Characteristics of Pipe Systems", Journal of the Korean Institute of Gas, 20(6), 58~64, (2016) https://doi.org/10.7842/kigas.2016.20.6.58
  2. Kim.W.S.,"ERW Steel Pipe for Natural Gas Pipeline", Journal of KWS, 19(3), 262~266, (2001)
  3. Joo. Y. J., Kim.M,Y., Park.J.K., Park.S.I., Shin.J.G., "Hydrogen Enriched Gas Turbine:Core Technologie and R&D Trend", Trans. of Korean Hydrogen and New Energy Society, 31(4), 351~362, (2022)
  4. 한국가스공사 편집실, "수소 혼입으로 대한민국 수소사회 앞당기는 한국가스공사", KOGAS ISSUE webzine vol.44, (2022)
  5. Choi.B., You.D., "Shape modification of a swingtype check valve for reduction of flow induced vibration", J.Comput.Fluids, 27(4), 65-73, (2022) https://doi.org/10.6112/kscfe.2022.27.4.065
  6. Hyun.Y., Oh.G., Yang.M., Choi.J., Choi.J.-I., " Numercial analysis of the effectiveness of air curtains in mitgating particle infiltrations to a subway cabin", J.Comput,Fluids, 27(4), 55-64, (2022) https://doi.org/10.6112/kscfe.2022.27.4.055
  7. Ha.D.M., "Facility/Technical/Inpection Code for Governors and Valve stations of wholesale gas business", KGS FS452, KGS, (2015)
  8. Cho.W.K., Moon.Y.W., Kim.Y.M., "Performance of Flow Rate Control of a Cavitating Venturi", 2002 Korean Society of Computational Fluids Engineering spring conference, 146-151, (2002)
  9. "Korea gas corporation standards", KOGAS-GSM2101, korea gas corporation, (2023)
  10. Chun. Y. N., "Flow Pattern and Concentration Distribution CFD Analysis According to CO2 Supply and Ventilation Fan Arrangement in Smart Farm Container", J. of the Korean Society for Environmental Technology, 23(6), 337~346, (2022) https://doi.org/10.26511/JKSET.23.6.7
  11. Seo. Y. S, Jeong. S. H, Lee. S. H., Hong. C. S., Jeong. W. B., " Vibration Analysis of Pipes Considering Fluid Pulsation" Trans. Korean Soc. Noise Vib, 31(2), 161~169, (2021)
  12. Andrzej. W., Andrezej. R., Mirostaw., Katarzyna. S., "Analysis of compression and transport of the methane/hydrogen mixture in existing natural gas pipelines", International Journal of Pressure Vessels and Piping, 166, 24-34, (2018) https://doi.org/10.1016/j.ijpvp.2018.08.002
  13. Witkowski, A., Rusin, A., Majkut, M., Stolecka, K., "Comprehensive analysis of hydrogen compression and pipeline transportation from thermodynamics and safety aspents", energy, 141, 2508~2518, (2017) https://doi.org/10.1016/j.energy.2017.05.141
  14. Choi. M. J., Lim. K. S., Lee. D. M.,"The Free Vibration Analysis of Pipe Systems Considering Fluid Velocity and the Change of Shape of Curved Pipe", the Journal of Industrial Liaison Research Institute KYUNG HEE UNIVERSITY, 6, 109-116, (2000)
  15. Tan. K., Mahajan. D., Venkatesh. T. A., "Computational fluid dynamic modeling of methane-hydrogen mixture transportation in pipelines: Understanding the effects of pipe roughness, pipe diameter and pipe bends", International journal of hydrogen enerhy, 49, 1028~1042, (2024) https://doi.org/10.1016/j.ijhydene.2023.06.195
  16. McClean. J. R., Faulstich. F. M., Zhu. Q., O'Gorman. B., Qiu. Y., White. S. R., Babbush. R., Lin. L.," Discontinuous Glaerkin discretization for quantum simulation of chemistry", New J.Phys., 22, 093015, (2020)
  17. Liu. C., Pei. Y., Cui. Z., Li. X., Yang. H., Xing. X., Duan. P., Li. L., Li. Y., "Study on the stratification of the blended gas in the pipeline with hydrogen into natural gas", international journal of hydrogen enerhy, 48, 5186~5196, (2023) https://doi.org/10.1016/j.ijhydene.2022.11.074
  18. Abbas. A. J., Hassani. H., Burby. M., John. I. J.," An investigation into the Volumetric Flow Rate Requirement of Hydrogen Transportation in Existing Natural Gas Pipelines and Its Safety Implications.", Gases, 1(4), 156-179, (2021) https://doi.org/10.3390/gases1040013
  19. Ruiz-Tagle. A., Groth. K. M., "Comparing the risk of third party excavation damage between natural gas and hydrogen pipelines", international journal of hydrogen energy, 57, 107~120, (2024) https://doi.org/10.1016/j.ijhydene.2023.12.195
  20. Witkowski, A., Rusin, A., Majkut, M., Stolecka, K., "Comprehensive analysis of hydrogen compression and pipeline transportation from thermodynamics and safety aspents", energy, 141, 2508~2518, (2017) https://doi.org/10.1016/j.energy.2017.05.141