DOI QR코드

DOI QR Code

A new metallic energy dissipation system for steel frame based on negative Poisson's ratio structures

  • Milad Masoodi (Department of Civil Engineering, Shahrood Branch, Islamic Azad University) ;
  • Ahmad Ganjali (Department of Civil Engineering, Shahrood Branch, Islamic Azad University) ;
  • Hamidreza Irani (Department of Civil Engineering, Shahrood Branch, Islamic Azad University) ;
  • Aboozar Mirzakhani (Department of Civil Engineering, Shahrood Branch, Islamic Azad University)
  • Received : 2022.01.22
  • Accepted : 2023.12.05
  • Published : 2024.01.10

Abstract

Using negative Poisson's ratio materials, an innovative metallic-yielding damper is introduced for the first time in this study. Through the use of ABAQUS commercial software, a nonlinear finite element analysis is conducted to determine the performance of the proposed system. Mild steel plates with elliptical holes are used for these types of dampers, which dissipate energy through an inelastic deformation of the constitutive material. To assess the capability of the proposed damper, nonlinear quasi-static finite element analyses have been conducted on the damper with a variety of geometric parameters. According to the results, the proposed system is ductile and has a high capacity to dissipate energy. The proposed auxetic damper has a specific energy absorption of 910.8 J/kg and a ductility of 33.6. Therefore, this damper can dissipate a large amount of earthquake input energy without buckling by increasing the buckling load of the brace with its ductile behavior. In addition, it was found that by incorporating auxetic dampers in the steel frame, the frame was made harder, stronger, and ductile and its energy absorption increased by 300%.

Keywords

References

  1. Abbasi-Ghiri, A., Ebrahimkhani, M. and Arjmand, N. (2022), "Novel force-displacement control passive finite element models of the spine to simulate intact and pathological conditions; comparisons with traditional passive and detailed musculoskeletal models", J. Biomech., 141, 111173. https://doi.org/10.1016/j.jbiomech.2022.111173.
  2. Azandariani, M.G. and Gholami, M. (2022), "Seismic fragility investigation of hybrid structures BRBF with eccentric-configuration and self-centering frame", J. Constr. Steel Res., 196, 107300. https://doi.org/10.1016/j.jcsr.2022.107300.
  3. Azandariani, M.G., Abdolmaleki, H. and Azandariani, A.G. (2020), "Numerical and analytical investigation of cyclic behavior of steel ring dampers (SRDs)", Thin Wall. Struct., 151, 106751. https://doi.org/10.1016/j.tws.2020.106751.
  4. Azandariani, M.G., Azandariani, A.G. and Abdolmaleki, H. (2020), "Cyclic behavior of an energy dissipation system with steel dual-ring dampers (SDRDs)", J. Constr. Steel Res., 172, 106145. https://doi.org/10.1016/j.jcsr.2020.106145.
  5. Azandariani, M.G., Rousta, A.M., Usefvand, E., Abdolmaleki, H. and Azandariani, A.G. (2021). "Improved seismic behavior and performance of energy-absorbing systems constructed with steel rings", Struct., 29, 534-548. https://doi.org/10.1016/j.istruc.2020.11.041.
  6. Bohara, R.P., Linforth, S., Nguyen, T., Ghazlan, A. and Ngo, T. (2023), "Anti-blast and-impact performances of auxetic structures: A review of structures, materials, methods, and fabrications", Eng. Struct., 276, 115377. https://doi.org/10.1016/j.engstruct.2022.115377.
  7. Bohara, R.P., Linforth, S., Thai, H.T., Nguyen, T., Ghazlan, A. and Ngo, T. (2023), "Experimental, numerical, and theoretical crushing behaviour of an innovative auxetic structure fabricated through 3D printing", Thin Wall. Struct., 182, 110209. https://doi.org/10.1016/j.tws.2022.110209.
  8. Cao, M., Cui, T., Yue, Y., Li, C., Guo, X., Jia, X. and Wang, B. (2023), "Preparation and characterization for the thermal stability and mechanical property of PLA and PLA/CF samples built by FFF approach", Mater., 16(14), 5023. https://doi.org/10.3390/ma16145023.
  9. Cao, M., Cui, T., Yue, Y., Li, C., Guo, X., Jia, X. and Wang, B. (2023), "Preparation and characterization for the thermal stability and mechanical property of PLA and PLA/CF samples built by FFF approach", Mater., 16(14), 5023. https://doi.org/10.3390/ma16145023.
  10. Chan, R.W. and Albermani, F. (2008), "Experimental study of steel slit damper for passive energy dissipation", Eng. Struct., 30(4), 1058-1066. s://doi.org/10.1016/j.engstruct.2007.07.005.
  11. Cui, J., Zhang, L. and Gain, A.K. (2023), "A novel auxetic unit cell for 3D metamaterials of designated negative Poisson's ratio", Int. J. Mech. Sci., 260, 108614. https://doi.org/10.1016/j.ijmecsci.2023.108614.
  12. Ebrahimkhani, M., Ghiri, A.A. and Farahmand, F. (2020). "Finite element analysis of a hip joint prosthesis with an extramedullary fixation system", 2020 27th National and 5th International Iranian Conference on Biomedical Engineering (ICBME), November.
  13. Esmaeili, J., Andalibi, K., Gencel, O., Maleki, F.K. and Maleki, V.A. (2021), "Pull-out and bond-slip performance of steel fibers with various ends shapes embedded in polymer-modified concrete", Constr. Build. Mater., 271, 121531. https://doi.org/10.1016/j.conbuildmat.2020.121531.
  14. Farzaneh, F. and Jung, S. (2023), "Experimental and numerical investigation on enhancing capped-end tube energy absorption capacity by orifice effect", Struct., 53, 1450-1462. https://doi.org/10.1016/j.istruc.2023.05.015.
  15. Francisco, M.B., Pereira, J.L.J., Oliver, G.A., Roque da Silva, L.R., Cunha Jr., S.S. and Gomes, G.F. (2022), "A review on the energy absorption response and structural applications of auxetic structures", Mech. Adv. Mater. Struct., 29(27), 5823-5842. https://doi.org/10.1080/15376494.2021.1966143.
  16. Ghaderi, M., Maleki, V.A. and Andalibi, K. (2015), "Retrofitting of unreinforced masonry walls under blast loading by FRP and spray on polyurea", Cumhuriyet universitesi Fen Fakultesi Fen Bilimleri Dergisi, 36(4), 462-477.
  17. Ghandil, M., Riahi, H.T. and Behnamfar, F. (2023), "Numerical and experimental studies on a new metallic-yielding pistonic damper based on pure-bending flexural yielding mechanism", J. Build. Eng., 78, 107690. https://doi.org/10.1016/j.jobe.2023.107690.
  18. Gholami, M., Zare, E., Gorji Azandariani, M. and Moradifard, R. (2021), "Seismic behavior of dual buckling-restrained steel braced frame with eccentric configuration and post-tensioned frame system", Soil Dyn. Earthq. Eng., 151, 106977. https://doi.org/10.1016/j.soildyn.2021.106977.
  19. Gorji Azandariani, M. and Gholami, M. (2022), "Seismic fragility investigation of hybrid structures BRBF with eccentric-configuration and self-centering frame", J. Constr. Steel Res., 196, 107300. https://doi.org/10.1016/j.jcsr.2022.107300.
  20. Gorji Azandariani, M., Gholhaki, M., Kafi, M.A. and Gorji Azandariani, A. (2022), "Assessment of cyclic behavior and performance of hybrid linked-column steel plate shear wall system", J. Build. Eng., 58, 104963. https://doi.org/10.1016/j.jobe.2022.104963.
  21. Gorji Azandariani, M., Kafi, M.A. and Gholhaki, M. (2021), "Innovative hybrid linked-column steel plate shear wall (HLCS) system: Numerical and analytical approaches", J. Build. Eng., 43, 102844. https://doi.org/10.1016/j.jobe.2021.102844.
  22. Guo, Y., Zhang, J., Chen, L., Du, B., Liu, H., Chen, L., Li, W. and Liu, Y. (2020), "Deformation behaviors and energy absorption of auxetic lattice cylindrical structures under axial crushing load", Aerosp. Sci. Technol., 98, 105662. https://doi.org/10.1016/j.ast.2019.105662.
  23. Hu, R., Hu, S., Yang, M. and Zhang, Y. (2022), "Metallic yielding dampers and fluid viscous dampers for vibration control in civil engineering: A review", Int. J. Struct. Stab. Dyn., 22(16), 2230006. https://doi.org/10.1142/S0219455422300063.
  24. Irani, H., Kalatjari, V.R. and Dibaei Bonab, M. (2021), "Reliability assessment of three-dimensional moment resisting frames designed according to the Iranian National Building Code, Part 10: Steel structures, 2008 and 2013 editions", J. Struct. Constr. Eng., 8(6), 173-190. https://doi.org/10.22065/JSCE.2020.185303.1858.
  25. Kontoni, D.P.N., Ghamari, A., Kheiri, J. and Ilia, G. (2023), "An innovative I-shaped low-yield steel shear damper directly connected to the concentrically braced frame", ce/papers, 6(3-4), 925-929. https://doi.org/10.1002/cepa.2604.
  26. Lee, W., Jeong, Y., Yoo, J., Huh, H., Park, S.J., Park, S.H. and Yoon, J. (2019), "Effect of auxetic structures on crash behavior of cylindrical tube", Compos. Struct., 208, 836-846. https://doi.org/10.1016/j.compstruct.2018.10.068.
  27. Li, Q., Wu, L., Hu, L., Miao, X., Liu, X. and Zou, T. (2023), "A sinusoidal beam lattice structure with negative Poisson's ratio property", Aerosp. Sci. Technol., 133, 108103. https://doi.org/10.1016/j.ast.2022.108103.
  28. Li, Z., Albermani, F., Chan, R.W. and Kitipornchai, S. (2011), "Pinching hysteretic response of yielding shear panel device", Eng. Struct., 33(3), 993-1000. https://doi.org/10.1016/j.engstruct.2010.12.021.
  29. Li, Z., Xie, C., Li, F., Wu, D. and Hu, N. (2023), "Heterogeneous geometric designs in auxetic composites toward enhanced mechanical properties under various loading scenarios", Compos. Commun., 38, 101499. https://doi.org/10.1016/j.coco.2023.101499.
  30. Lyu, J., Akhavan, J., Mahmoud, Y., Xu, K., Vallabh, C.K.P. and Manoochehri, S. (2023), "Real-time monitoring and gaussian process-based estimation of the melt pool profile in direct energy deposition", Int. Manuf. Sci. Eng. Conf., 87233, V001T01A024. https://doi.org/10.1115/MSEC2023-105104.
  31. Ma, H., Wang, K., Zhao, H., Hong, Y., Zhou, Y., Xue, J., Li, Q., Wang, G. and Yan, B. (2023), "Energy dissipation in multistable auxetic mechanical metamaterials", Compos. Struct., 304, 116410. https://doi.org/10.1016/j.compstruct.2022.116410.
  32. Maleki, S. and Bagheri, S. (2010), "Pipe damper, Part I: Experimental and analytical study", J. Constr. Steel Res., 66(8-9), 1088-1095. https://doi.org/10.1016/j.jcsr.2010.03.010.
  33. Maleki, S. and Mahjoubi, S. (2013), "Dual-pipe damper", J. Constr. Steel Res., 85, 81-91. https://doi.org/10.1016/j.jcsr.2013.03.004.
  34. Marder, K.J., Motter, C.J., Elwood, K.J. and Clifton, G.C. (2018), "Effects of variation in loading protocol on the strength and deformation capacity of ductile reinforced concrete beams", Earthq. Eng. Struct. Dyn., 47(11), 2195-2213. https://doi.org/10.1002/eqe.3064.
  35. Mercer, C., Speck, T., Lee, J., Balint, D.S. and Thielen, M. (2022), "Effects of geometry and boundary constraint on the stiffness and negative Poisson's ratio behaviour of auxetic metamaterials under quasi-static and impact loading", Int. J. Impact Eng., 169, 104315. https://doi.org/10.1016/j.ijimpeng.2022.104315.
  36. Mir, M., Ali, M.N., Sami, J. and Ansari, U. (2014), "Review of mechanics and applications of auxetic structures", Adv. Mater. Sci. Eng., 2014, Article ID 753496. https://doi.org/10.1155/2014/753496.
  37. Razi, S., Wang, X., Mehreganian, N., Tootkaboni, M. and Louhghalam, A. (2023), "Application of mean-force potential lattice element method to modeling complex structures", Int. J. Mech. Sci., 260, 108653. https://doi.org/10.1016/j.ijmecsci.2023.108653.
  38. Ren, X., Das, R., Tran, P., Ngo, T.D. and Xie, Y.M. (2018), "Auxetic metamaterials and structures: A review", Smart Mater. Struct., 27(2), 023001. https://doi.org/10.1088/1361-665X/aaa61c.
  39. Rousta, A.M. and Azandariani, M.G. (2022), "Micro-finite element and analytical investigations of seismic dampers with steel ring plates", Steel Compos. Struct., 43(5), 565. https://doi.org/10.12989/scs.2022.43.5.565.
  40. Rousta, A.M., Shojaeifar, H., Azandariani, M.G., Saberiun, S. and Abdolmaleki, H. (2021), "Cyclic behavior of an energy dissipation semi-rigid moment steel frames (SMRF) system with LYP steel curved dampers", Struct. Eng. Mech., 80(2), 129-142. https://doi.org/10.12989/sem.2021.80.2.129.
  41. Rui, S., Zhou, Z., Jostad, H.P., Wang, L. and Guo, Z. (2023), "Numerical prediction of potential 3-dimensional seabed trench profiles considering complex motions of mooring line", Appl. Ocean Res., 139, 103704. https://doi.org/10.1016/j.apor.2023.103704.
  42. Saeimi-Sadigh, M.A., Paykani, A., Afkar, A. and Aminollah, D. (2014), "Design and energy absorption enhancement of vehicle hull under high dynamic loads", J. Central South Univ., 21, 1307-1312. https://doi.org/10.1007/s11771-014-2067-4.
  43. Saghafian, M., Seyedzadeh, H. and Moradmand, A. (2023), "Numerical simulation of electroosmotic flow in a rectangular microchannel with use of magnetic and electric fields", Scientia Iranica, https://doi.org/10.24200/SCI.2023.58474.5742.
  44. Saxena, K.K., Das, R. and Calius, E.P. (2016), "Three decades of auxetics research-materials with negative Poisson's ratio: A review", Adv. Eng. Mater., 18(11), 1847-1870. https://doi.org/10.1002/adem.201600053.
  45. Song, Z., Liang, H., Ding, H. and Ma, M. (2023), "Structure design and mechanical properties of a novel anti-collision system with negative Poisson's ratio core", Int. J. Mech. Sci., 239, 107864. https://doi.org/10.1016/j.ijmecsci.2022.107864.
  46. Tian, L.M., Jin, B.B. and Li, L. (2023), "Axial compressive mechanical behaviors of a double-layer member", J. Struct. Eng., 149(8), 04023110. https://doi.org/10.1061/JSENDH.STENG-12175.
  47. Tsai, K.C., Chen, H.W., Hong, C.P. and Su, Y.F. (1993), "Design of steel triangular plate energy absorbers for seismic-resistant construction", Earthq. Spectra, 9(3), 505-528. https://doi.org/10.1193/1.1585727.
  48. Usefvand, M., Rousta, A.M., Azandariani, M.G. and Abdolmaleki, H. (2021), "Steel dual-ring dampers: Micro-finite element modelling and validation of cyclic behavior", Smart Struct. Syst., 28(4), 579-592. https://doi.org/10.12989/sss.2021.28.4.579
  49. Vahidi Pashaki, P., Pouya, M. and Maleki, V.A. (2018), "High-speed cryogenic machining of the carbon nanotube reinforced nanocomposites: Finite element analysis and simulation", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 232(11), 1927-1936. https://doi.org/10.1177/0954406217714012.
  50. Van, C.N. and Ghamari, A. (2023), "Investigating the behavior of an innovative butterfly-shaped damper: An experimental and numerical study", Struct. Des. Tall Spec. Build., 32(16), e2042. https://doi.org/10.1002/tal.2042.
  51. Wang, S., Deng, C., Ojo, O., Akinrinlola, B., Kozub, J. and Wu, N. (2022), "Design and modeling of a novel three dimensional auxetic reentrant honeycomb structure for energy absorption", Compos. Struct., 280, 114882. https://doi.org/10.1016/j.compstruct.2021.114882.
  52. Wang, W., Jin, Y., Mu, Y., Zhang, M. and Du, J. (2023), "A novel tubular structure with negative Poisson's ratio based on gyroid-type triply periodic minimal surfaces", Virtual Phys. Prototyp., 18(1), e2203701. https://doi.org/10.1080/17452759.2023.2203701.
  53. Wang, W.J., Zhang, W.M., Guo, M.F., Yang, J.S. and Ma, L. (2023), "Energy absorption characteristics of a lightweight auxetic honeycomb under low-velocity impact loading", Thin Wall. Struct., 185, 110577. https://doi.org/10.1016/j.tws.2023.110577.
  54. Wang, Y.Y., Lou, M., Wang, Y., Wu, W.G. and Yang, F. (2022), "Stochastic failure analysis of reinforced thermoplastic pipes under axial loading and internal pressure", Chin. Ocean Eng., 36(4), 614-628. https://doi.org/10.1007/s13344-022-0054-3.
  55. Xu, G. and Ou, J. (2022), "Seismic performance of combined rotational friction and flexural yielding metallic dampers", J. Build. Eng., 49, 104059. https://doi.org/10.1016/j.jobe.2022.104059.
  56. Xu, K., Lyu, J. and Manoochehri, S. (2022), "In situ process monitoring using acoustic emission and laser scanning techniques based on machine learning models", J. Manuf. Proc., 84, 357-374. https://doi.org/10.1016/j.jmapro.2022.10.002.
  57. Xu, Y. and Savija, B. (2023), "3D auxetic cementitious-polymeric composite structure with compressive strain-hardening behavior", Eng. Struct., 294, 116734. https://doi.org/10.1016/j.engstruct.2023.116734.
  58. Yang, Y., Lin, B. and Zhang, W. (2023), "Experimental and numerical investigation of an arch-beam joint for an arch bridge", Arch. Civil Mech. Eng., 23(2), 101.
  59. Zhang, Q., Zhu, Y., Lu, F., Yu, C., Ren, X. and Shao, Y. (2023), "A novel buckling-induced planner isotropic auxetic meta-structure and its application in BRB: A numerical study", Mech. Adv. Mater. Struct., 30, 1-14. https://doi.org/10.1080/15376494.2023.2224810.
  60. Zhang, X.G., Jiang, W., Zhang, Y., Luo, C., Zhang, X.Y., Han, D., Hao, J., Teng, X.C., Xie, Y.M. and Ren, X. (2022), "Energy absorption properties of composite tubes with hexagonal and reentrant honeycomb fillers", Constr. Build. Mater., 356, 129298. https://doi.org/10.1016/j.conbuildmat.2022.129298.
  61. Zhang, Y., Ren, X., Zhang, X.Y., Huang, T.T., Sun, L. and Xie, Y.M. (2021), "A novel buckling-restrained brace with auxetic perforated core: Experimental and numerical studies", Eng. Struct., 249, 113223. https://doi.org/10.1016/j.engstruct.2021.113223.
  62. Zhong, R., Ren, X., Zhang, X.Y., Luo, C., Zhang, Y. and Xie, Y.M. (2022), "Mechanical properties of concrete composites with auxetic single and layered honeycomb structures", Constr. Build. Mater., 322, 126453. https://doi.org/10.1016/j.conbuildmat.2022.126453.
  63. Zhu, Y., Jiang, S., Zhang, Q., Li, J., Yu, C. and Zhang, C. (2022), "A novel monoclinic auxetic metamaterial with tunable mechanical properties", Int. J. Mech. Sci., 236, 107750. https://doi.org/10.1016/j.ijmecsci.2022.107750.