DOI QR코드

DOI QR Code

Research of the crack problem of a functionally graded layer

  • Murat Yaylaci (Department of Civil Engineering, Recep Tayyip Erdogan University) ;
  • Ecren Uzun Yaylaci (Faculty of Engineering and Architecture, Recep Tayyip Erdogan University) ;
  • Muhittin Turan (Department of Civil Engineering, Bayburt University) ;
  • Mehmet Emin Ozdemir (Department of Civil Engineering, Cankiri Karatekin University) ;
  • Sevval Ozturk (Department of Civil Engineering, Recep Tayyip Erdogan University) ;
  • Sevil Ay (Department of Civil Engineering, Artvin Coruh University)
  • Received : 2022.10.27
  • Accepted : 2023.12.13
  • Published : 2024.01.10

Abstract

In this study, the two-dimensional crack problem was investigated by using the finite element method (FEM)-based ANSYS package program and the artificial neural network (ANN)-based multilayer perceptron (MLP) method. For this purpose, a half-infinite functionally graded (FG) layer with a crack pressed through two rigid blocks was analyzed using FEM and ANN. Mass forces and friction were neglected in the solution. To control the validity of the crack problem model exercised, the acquired results were compared with a study in the literature. In addition, FEM and ANN results were checked using Root Mean Square Error (RMSE) and coefficient of determination (R2), and a well agreement was found. Numerical solutions were made considering different geometric parameters and material properties. The stress intensity factor (SIF) was examined for these values, and the results were presented. Consequently, it is concluded that the considered non-dimensional quantities have a noteworthy influence on the SIF. Also FEM and ANN can be logical alternative methods to time-consuming analytical solutions if used correctly.

Keywords

References

  1. Alrayes, O., Konke, C., Ooi, E.T. and Hamdia, K.M. (2023), "Modeling cyclic crack propagation in concrete using the scaled boundary finite element method coupled with the cumulative damage-plasticity constitutive law", Materials, 16(2), 863. https://doi.org/10.3390/ma16020863.
  2. Ammendolea, D., Greco, F., Leonetti, L., Lonetti, P. and Pascuzzo, A. (2023), "A numerical failure analysis of nano-filled ultrahigh-performance fiber-reinforced concrete structures via a moving mesh approach", Theor. Appl. Fract. Mech., 125, 103877. https://doi.org/10.1016/j.tafmec.2023.103877.
  3. ANSYS (2013), Mechanical APDL, ANSYS Contact Technology Guide. Ansys, Inc., Canonsburg, Pennsylvania, U.S.A.
  4. Asteris, P.G. and Mokos, V.G. (2020), "Concrete compressive strength using artificial neural networks", Neural Comput. Appl., 32, 11807-11826. https://doi.org/10.1007/s00521-019-04663-2.
  5. Banh, T.T., Lee, J., Kang, J. and Lee, D. (2020), "Multi-material topology optimization for crack problems based on extended isogeometric analysis", Steel Compos. Struct., 37(6), 663-678. https://doi.org/10.12989/scs.2020.37.6.663.
  6. Beyer, T., Chaise, T., Leroux, J. and Nelias, D. (2019), "A damage model for fretting contact between a sphere and a half space using semi-analytical method", Int. J. Solids. Struct., 164, 66-83. https://doi.org/10.1016/j.ijsolstr.2019.01.009.
  7. Bin Younis, H., Kamal, K., Sheikh, M.F. and Hamza, A. (2022), "Prediction of fatigue crack growth rate in aircraft aluminum alloys using optimized neural networks", Theor. Appl. Fract. Mech., 117, 103196. https://doi.org/10.1016/j.tafmec.2021.103196.
  8. Bresolin, J.M., Pravia, Z.M. and Kripka, M. (2022), "Discrete sizing and layout optimization of steel truss-framed structures with Simulated Annealing Algorithm", Steel Compos. Struct., 44(5), 603. https://doi.org/10.12989/scs.2022.44.5.603.
  9. Buezas, F.S., Rosales, M.B. and Filipich, C.P. (2011), "Damage detection with genetic algorithms taking into account a crack contact model", Eng. Fract. Mech., 78(4), 695-712. https://doi.org/10.1016/j.engfracmech.2010.11.008.
  10. Chen, L.M., Hu, D., Deng, H., Cui, Y.H. And Zhou, Y.Y. (2016), "Optimization of the construction scheme of the cable-strut tensile structure based on error sensitivity analysis", Steel Compos. Struct., 21(5), 1031-1043. https://doi.org/10.12989/scs.2016.21.5.1031.
  11. Das, O., Gonenli, C. and Bagci Das, D. (2023), "Crack detection in folded plates with back-propagated artificial neural network", Steel Compos. Struct., 46(3), 319-334. https://doi.org/10.12989/scs.2023.46.3.319.
  12. Dehghanbanadaki, A., Rashid, A.S.A., Ahmad, K., Yunus, N.Z.M. and Said, K.N.M. (2022), "A computational estimation model for the subgrade reaction modulus of soil improved with DCM columns", Geomec. Eng., 28(4), 385-396. https://doi.org/10.12989/gae.2022.28.4.385.
  13. Fang, L., Fu, Z., Ji, B. and Li, X. (2023), "The stiffnessdegradation law of base metal after fatigue cracking in steel bridge deck", Steel Compos. Struct., 47(2), 239-251. https://doi.org/10.12989/scs.2023.47.2.239.
  14. Gaetano, D., Greco, F., Leonetti, L., Lonetti, P., Pascuzzo, A. and Ronchei, C. (2022), "An interface-based detailed micro-model for the failure simulation of masonry structures", Eng. Fail. Anal., 142, 106753. https://doi.org/10.1016/j.engfailanal.2022.106753.
  15. Goswami, S., Anitescu, C., Chakraborty, S. and Rabczuk, T. (2020), "Transfer learning enhanced physics informed neural network for phase-field modeling of fracture", Theor. Appl. Fract. Mech., 106, 10244. https://doi.org/10.1016/j.tafmec.2019.102447.
  16. Guidault, P.A., Allix, O., Champaney, L. and Cornuault, C. (2008), "A multiscale extended finite element method for crack propagation", Comput. Methods Appl. Mech. Eng., 197(5), 381-399. https://doi.org/10.1016/j.cma.2007.07.023.
  17. Heidari, A.A., Faris, H., Aljarah, I. and Mirjalili, S. (2019), "An efficient hybrid multilayer perceptron neural network with grasshopper optimization", Soft Comput., 23(17), 7941-7958. https://doi.org/10.1007/s00500-018-3424-2.
  18. Hornik, K., Stinchcombe, M. and White, H. (1989), "Multilayer feedforward networks are universal approximators", Neural. Netw., 2(5), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8.
  19. Jaiswal, A. and Kumar, R. (2022), "Finite element analysis of granular column for various encasement conditions subjected to shear load", Geomec. Eng., 29(6), 645-655. https://doi.org/10.12989/gae.2022.29.6.645.
  20. Karlik, B. and Olgac, A.V. (2011), "Performance analysis of various activation functions in generalized MLP architectures of neural networks", Int. J. Artif. Intell. Expert Syst., 1, 111-122.
  21. Kavzoglu, T. (2001), "An investigation of the design and use of feedforward artificial neural networks in the classification of remotely sensed images", PhD Thesis, School of Geography, University of Nottingham.
  22. Lawal, A.I., Kwon, S., Aladejare, A.E. and Oniyide, G.O. (2022), "Prediction of the static and dynamic mechanical properties of sedimentary rock using soft computing methods", Geomec. Eng., 28(3), 313-334. https://doi.org/10.12989/gae.2022.28.3.313.
  23. Le Cun, Y. (1990) Denker, J.S., Solla, S.A.: Optimal brain damage. Adv. Neur. Inform. Proc Syst 2:598-605.
  24. Li, N., Asteris, P. G., Tran, T. T., Pradhan, B. and Nguyen, H. (2022), "Modelling the deflection of reinforced concrete beams using the improved artificial neural network by imperialist competitive optimization", Steel Compos. Struct., 42(6), 733. https://doi.org/10.12989/scs.2022.42.6.733.
  25. Liu, X., Zhao, X. and Shangguan, W.B. (2022), "Fatigue life prediction of natural rubber components using an artificial neural network", Fatigue Fract. Eng. Mater. Struct., 45(6), 1678-1689. https://doi.org/10.1111/ffe.13690.
  26. Luat, N.V., Lee, H., Shin, J., Park, J.H., Ahn, T.S. and Lee, K. (2022), "Experimental and numerical investigation of RC frames strengthened with a hybrid seismic retrofit system", Steel Compos. Struct., 45(4), 563-577. https://doi.org/10.12989/scs.2022.45.4.563.
  27. Mai, S.H., Gravouil, A., Nguyen-Tajan, M.L. and Trolle, B. (2017), "Numerical simulation of rolling contact fatigue crack growth in rails with the rail bending and the frictional contact", Eng. Fract. Mech., 174, 196-206. https://doi.org/10.1016/j.engfracmech.2016.12.019.
  28. McCulloch, W.S. and Pitts, W. (1943), "A logical calculus of the ideas immanent in nervous activity", Bull. Math. Biophys., 5(4), 115-133. https://doi.org/10.1007/BF02478259.
  29. Meray, F., Chaise, T., Gravouil, A., Depouhon, P., Descharrieres, B. and Nelias, D. (2022), "A novel SAM/X-FEM coupling approach for the simulation of 3D fatigue crack growth under rolling contact loading", Finite Elem. Anal. Des., 206, 103752. https://doi.org/10.1016/j.finel.2022.103752.
  30. Modarres, C., Astorga, N., Droguett, E.L. and Meruane, V. (2018), "Convolutional neural networks for automated damage recognition and damage type identification", Struct. Control. Heal. Monit., 25(10), 1-17. https://doi.org/10.1002/stc.2230.
  31. Oner, E., Sengul Sabano, B., Uzun Yaylaci, E., Adiyaman, G., Yaylaci, M. and Birinci, A. (2022), "On the plane receding contact between two functionally graded layers using computational, finite element and artificial neural network methods", J. Appl. Math. Mech., 102(2), 1-26. https://doi.org/10.1002/zamm.202100287.
  32. Ooi, E.T., Song, C., Tin-Loi, F. and Yang, Z. (2012), "Polygon scaled boundary finite elements for crack propagation modelling", Int. J. Numer. Meth. Engng., 91, 319-342. https://doi.org/10.1002/nme.4284.
  33. Pham, Q.H., Nguyen, P.C., Tran, V.K. and Nguyen-Thoi, T. (2021), "Finite element analysis for functionally graded porous nano-plates resting on elastic foundation", Steel Compos. Struct., 41(2), 149. https://doi.org/10.12989/scs.2021.41.2.149.
  34. Poluektov, M. and Figiel, L. (2022), "A cut finite-element method for fracture and contact problems in large-deformation solid mechanics", Comput. Methods Appl. Mech. Eng., 388, 114234. https://doi.org/10.1016/j.cma.2021.114234.
  35. Rashidpour, P., Ghadiri, M. and Zajkani, A. (2021), "The response of viscoelastic composite laminated microplate under lowvelocity impact based on nonlocal strain gradient theory for different boundary conditions", Steel Compos. Struct., 41(3), 335-351. https://doi.org/10.12989/scs.2021.41.3.335.
  36. Rousta, A.M. and Azandariani, M.G. (2022), "Micro-finite element and analytical investigations of seismic dampers with steel ring plates", Steel Compos. Struct., 43(5), 565. https://doi.org/10.12989/scs.2022.43.5.565.
  37. Saputro, D.R.S., Widyaningsih, P. (2017), Limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method for the parameter estimation on geographically weighted ordinal logistic regression model (GWOLR). AIP Conf Proc 1868:040009. https://doi.org/10.1063/1.4995124.
  38. Torabi, A.R., Shams, S. and Fatehi-Narab, M. (2021), "Investigating the effect of edge crack on the modal properties of composite wing using dynamic stiffness matrix", Steel Compos. Struct., 39(5), 543-564. https://doi.org/10.12989/scs.2021.39.5.543.
  39. Trolle, B., Gravouil, A., Baietto, M.C. and Nguyen-Tajan, T.M.L. (2012), "Optimization of a stabilized X-FEM formulation for frictional cracks", Finite Elem. Anal. Des., 59, 18-27. https://doi.org/10.1016/j.finel.2012.04.010.
  40. Turan, M., Adiyaman, G., Kahya, V. and Birinci, A. (2016), "Axisymmetric analysis of a functionally graded layer resting on elastic substrate", Struct. Eng. Mech., 58(3), 423-442. https://doi.org/10.12989/sem.2016.58.3.423.
  41. Ustun, A. (2019), "Contact-crack problem of homogeneous infinite layer loaded with anti symmetric two rigid blocks", Master's Thesis, Karadeniz Technical University, Trabzon, Turkey.
  42. Uzun Yaylaci, E., Yaylaci, M., Olmez, H. and Birinci, A. (2020), "Artificial neural network calculations for a receding contact problem", Comput. Concr., 25(6), 551-563. https://doi.org/10.12989/cac.2020.25.6.551.
  43. Wang, L., Vuik, C. and Hajibeygi, H. (2022), "A stabilized mixedFE scheme for frictional contact and shear failure analyses in deformable fractured media", Eng. Fract. Mech., 267, 108427. https://doi.org/10.1016/j.engfracmech.2022.108427.
  44. Wang, Q., Feng, Y.T., Zhou, W., Cheng, Y. and Ma, G. (2020), "A phase-field model for mixed-mode fracture based on a unified tensile fracture criterion", Comput. Methods Appl. Mech. Eng., 370, 113270. https://doi.org/10.1016/j.cma.2020.113270.
  45. Wu, C.L., Kan, J.C., Wang, Q.H., Liu, J.M. and Li, Z.Q. (2021), "FEM analysis of the modular prefabricated steel-concrete composite beam-column internal joint under reciprocating action", Steel Compos. Struct., 41(1), 45-64. https://doi.org/10.12989/scs.2021.41.1.045.
  46. Yan, F., Yang, H.R., Jiang, Q., Li, S.J., Xu, D.P. and Tang, Z.D. (2022), "Continuous-discontinuous cellular automaton method for intersecting and branching crack problems", Eng. Fract. Mech., 262, 08272. https://doi.org/10.1016/j.engfracmech.2022.108272.
  47. Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org/10.12989/sem.2016.57.6.1143.
  48. Yaylaci, M. (2022), "Simulate of edge and an internal crack problem and estimation of stress intensity factor through finite element method", Adv. Nano. Res., 12(4), 405-414. https://doi.org/10.12989/anr.2022.12.4.405.
  49. Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114. https://doi.org/10.12989/cac.2020.26.2.107.
  50. Yaylaci, M., Abanoz, M., Uzun Yaylaci, E., Olmez, H., Sekban, D.M. and Birinci, A. (2022), "Evaluation of the contact problem of functionally graded layer resting on rigid foundation pressed via rigid punch by analytical and numerical (FEM and MLP) methods", Arch. Appl. Mech., 92, 1953-1971. https://doi.org/10.1007/s00419-022-02159-5.
  51. Yaylaci, M., Abanoz, M., Uzun Yaylaci, E., Olmez, H., Sekban, M.D. and Birinci A. (2022a), "The contact problem of the functionally graded layer resting on rigid foundation pressed via rigid punch", Steel Compos. Struct., 43(5), 661-672. https://doi.org/10.12989/scs.2022.43.5.661.
  52. Yaylaci, M., Adiyaman, E., Oner, E. and Birinci, A. (2020), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 76(3), 325-336. https://doi.org/10.12989/sem.2020.76.3.325.
  53. Yaylaci, M., Adiyaman, E., Oner, E. and Birinci, A. (2021a), "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concrete, 27, 199-210. https://doi.org/10.12989/cac.2021.27.3.199.
  54. Yaylaci, M., Eyuboglu, A., Adiyaman, G., Uzun Yaylaci, E., Oner, E. and Birinci, A. (2021), "Assessment of different solution methods for receding contact problems in functionally graded layered mediums", Mech. Mater., 154, 103730. https://doi.org/10.1016/j.mechmat.2020.103730.
  55. Yaylaci, M., Uzun Yaylaci, E., Ozdemir, M.E., Ay, S. and Ozturk, S. (2022b), "Implementation of finite element and artificial neural network methods to analyze the contact problem of a functionally graded layer containing crack", Steel Compos. Struct., 45(4), 501-511. https://doi.org/10.12989/scs.2022.45.4.501.
  56. Yaylaci, M., Uzun Yaylaci, E., Ozdemir, M.E., Ozturk, S. and Sesli, H. (2023), "Vibration and buckling analyses of FGM beam with edge crack: Finite element and multilayer perceptron methods", Steel Compos. Struct., 46(4), 565-575. https://doi.org/10.12989/scs.2023.46.4.565.
  57. Yaylaci, M., Yayli, M., Uzun Yaylaci, E., Olmez, H. and Birinci, A. (2021b), "Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron", Struct. Eng. Mech., 78(5), 585-597. https://doi.org/10.12989/sem.2021.78.5.585.
  58. Zhang, L. and Wei, X. (2022), "Prediction of fatigue crack growth under variable amplitude loading by artificial neural networkbased Lagrange interpolation", Mech. Mater., 104309. https://doi.org/10.1016/j.mechmat.2022.104309.
  59. Zhang, L.N., Qin, T.Y., Xu, C.H. and Zhang, C. (2015), "Analysis of two intersecting three-dimensional cracks by a BIEM", Acta. Mech., 226(12), 4043-4057. https://doi.org/10.1007/s00707-015-1469-1.
  60. Zhou, K. and Wei, R. (2014), "Modeling cracks and inclusions near surfaces under contact loading", Int. J. Mech. Sci., 83, 163-171. https://doi.org/10.1016/j.ijmecsci.2014.03.028.