DOI QR코드

DOI QR Code

Characterization of nano-structure pyrolytic char for smart and sustainable nanomaterials

  • N. K. Karthikeyan (School of Civil Engineering, Vellore Institute of Technology, Chennai-campus) ;
  • S. Elavenil (School of Civil Engineering, Vellore Institute of Technology, Chennai-campus)
  • Received : 2023.08.18
  • Accepted : 2023.10.19
  • Published : 2024.01.25

Abstract

Advancements in the technology of building materials has led to diverse applications of nanomaterials with the aim to monitor concrete structures. While there are myriad instances of the use of nanoparticles in building materials, the production of smart nano cement-composites is often expensive. Thereupon, this research aims to discover a sustainable nanomaterial from tyre waste using the pyrolysis process as part of the green manufacturing circle. Here, Nano Structure Tyre-Char (NSTC) is introduced as a zero-dimension carbon-based nanoparticle. The NSTC particles were characterized using various standard characterization techniques. Several salient results for the NSTC particles were obtained using microscopic and spectroscopic techniques. The size of the particles as well as that of the agglomerates were reduced significantly using the milling process and the results were validated through a scanning electron microscope. The crystallite size and crystallinity were found to be ~35nm and 10.42%, respectively. The direct bandgap value of 5.93eV and good optical conductivity at 786 nm were obtained from the ultra violet visible spectroscopy measurements. The thermal analysis reveals the presence of a substantial amount of carbon, the rate of maximum weight loss, and the two stages of phase transformation. The FT-Raman confirms the presence of carboxyl groups and a ID/IG ratio of 0.83. Water contact angle around 140° on the surface implies the highly hydrophobic nature of the material and its low surface energy. This characteristic process assists to obtain a sustainable nanomaterial from waste tyres, contributing to the development of a smart building material.

Keywords

Acknowledgement

The authors would like to thank the Dean-School of Civil Engineering, Vellore Institute of Technology, Chennai, India, for providing support and lab facilities to carry out this research. We thank the "DST and SAIF/IIT/M", "Centre for Nanoscience and Technology, Anna University", "STIC CUSAT", "National Centre for Earth Science Studies - Thiruvananthapuram", "School of Advanced Sciences, VIT-Chennai", for providing the analytical services. We would like to acknowledge "Dr. Shanmuga Sundaram, VIT-Chennai", for providing valuable ideas during the research phase.

References

  1. Abbas-Abadi, M.S., Kusenberg, M., Shirazi, H.M., Goshayeshi, B. and Van Geem, K.M. (2022), "Towards full recyclability of end-of-life tires: Challenges and opportunities", J. Clean. Prod., 374, 134036. https://doi.org/10.1016/j.jclepro.2022.134036.
  2. Adar, F. (2016), "Introduction to interpretation of raman spectra using database searching and functional group detection and identification", Spectroscopy, 31(7), 16-23.
  3. Adar, F. (2022), "Use of raman spectroscopy to qualify carbon materials", Spectroscopy, 37(6), 11-15, 50. https://doi.org/10.56530/spectroscopy.wx3481u2.
  4. Al-Fa'ouri, A.M., Lafi, O.A., Abu-Safe, H.H. and Abu-Kharma, M. (2023), "Investigation of optical and electrical properties of copper oxide - polyvinyl alcohol nanocomposites for solar cell applications", Arab. J. Chem., 16(4), 104535. https://doi.org/10.1016/j.arabjc.2022.104535.
  5. Banasiak, L., Chiaro, G., Palermo, A. and Granello, G. (2019), "Recycling of end-of-life tyres in civil engineering application: Environmental implications", Nucl. Phys., 13(1), 104-116.
  6. Barhoum, A., Garcia-Betancourt, M.L., Rahier, H. and Van Assche, G. (2018), "Physicochemical characterization of nanomaterials: Polymorph, composition, wettability, and thermal stability", Emerging Applications of Nanoparticles and Architectural Nanostructures, Elsevier, Netherlands.
  7. Chaala, A., Roy, C. and Ait-Kadi, A. (1996), "Rheological properties of bitumen modified with pyrolytic carbon black", Fuel, 75(13), 1575-1583. https://doi.org/10.1016/0016-2361(96)00143-3.
  8. Chia, C.H., Gong, B., Joseph, S.D., Marjo, C.E., Munroe, P. and Rich, A.M. (2012), "Imaging of mineral- enriched biochar by FTIR, Raman and SEM - EDX", Vib. Spectrosc., 62, 248-257. https://doi.org/10.1016/j.vibspec.2012.06.006
  9. Chen, C.C., Huang, Y. H. and Chien, H.J. (2021), "Waste tire-derived porous nitrogen-doped carbon black as an electrode material for supercapacitors", Sustain. Chem. Pharm., 24, 100535. https://doi.org/10.1016/j.scp.2021.100535
  10. Citak, A. and Yarbas, T. (2022), "Using contact angle measurement technique for determination of the surface free energy of B-SBA-15-x materials", Int. J. Adhes. Adhes., 112, 103024. https://doi.org/10.1016/j.ijadhadh.2021.103024.
  11. Dahrul, M., Alatas, H. and Irzaman (2016), "Preparation and optical properties study of CuO thin film as applied solar cell on LAPAN-IPB satellite", Procedia Environ. Sci., 33, 661-667. https://doi.org/10.1016/j.proenv.2016.03.121.
  12. Demirbas, A. (2004), "Combustion characteristics of different biomass fuels", Prog. Energy Combust. Sci., 30(2), 219-230. https://doi.org/10.1016/j.pecs.2003.10.004.
  13. Dwivedi, C., Manjare, S. and Rajan K Sushil (2020), "Recycling of waste tire by pyrolysis to recover carbon black: an alternative reinforcing filler", Compos. Part B, 200, 108346. https://doi.org/10.1007/s10163-023-01635-6.
  14. De Falco, G., Mattiello, G., Commodo, M., Minutolo, P., Shi, X., D'Anna, A. and Wang, H., (2021), "Electronic band gap of flame-formed carbon nanoparticles by scanning tunneling spectroscopy", Proc. Combust. Inst., 38(1), 1805-1812. https://doi.org/10.1016/j.proci.2020.07.109.
  15. Feng, Z., Zhao, P., Li, X. and Zhu, L. (2021), "Preparation and properties of bitumen modified with waste rubber pyrolytic carbon black", Constr. Build.Mater., 282, 122697. https://doi.org/10.1016/j.conbuildmat.2021.122697.
  16. Feng, Z.G., Rao, W.Y., Chen, C., Tian, B., Li, X.J., Li, P.L. and Guo, Q.L. (2016), "Performance evaluation of bitumen modified with pyrolysis carbon black made from waste tyres", Constr. Build. Mater., 111, 495-501. https://doi.org/10.1016/j.conbuildmat.2016.02.143.
  17. Figueredo, N.A. de, Consta, L.M. da, Melo, L.C.A., Siebeneichlerd, E. and Antonio, Tronto, J. (2017), "Characterization of biochars from different sources and evaluation", Rev. Ciencia Agronomica, 48, 395-403. https://doi.org/10.5935/1806-6690.20170046.
  18. Fowkes, F.M. (1962), "Determination of interfacial tensions, contact angles, and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces", J. Phys. Chem., 66(2), 382. https://doi.org/https://doi.org/10.1021/j100808a524.
  19. Fowkes, F.M. (1964), "Attractive forces at interfaces', Ind. Eng. Chem., 56, 40-52. https://doi.org/10.1021/ie50660a008.
  20. Gao, N., Wang, F., Quan, C., Santamaria, L., Lopez, G. and Williams, P.T. (2022), "Tire pyrolysis char: Processes, properties, upgrading and applications", Prog. Energy Combust. Sci., 93, 101022. https://doi.org/10.1016/j.pecs.2022.101022.
  21. Gindl, M., Sinn, G., Gindl, W., Reiterer, A. and Tschegg, S. (2001), "A comparison of different methods to calculate the surface free energy of wood using contact angle measurements", Colloids Surf. A, 181, 279-287. https://doi.org/10.1016/S0927-7757(00)00795-0.
  22. Goh, Y.M., Han, K.D., Tan, L.L. and Chai, S.P. (2014), "Facile preparation of superhydrophobic thin films using non-aligned carbon nanotubes", Adv. nano Res., 2(4), 219-225. https://doi.org/10.12989/anr.2014.2.4.219
  23. Goksal, F.P. (2022), "An economic analysis of scrap tire pyrolysis, potential and new opportunities", Heliyon, 8(11), e11669. https://doi.org/10.1016/j.heliyon 2022.e11669.
  24. Hu, M., Yao, Z. and Wang, X. (2017), "Characterization techniques for graphene-based materials in catalysis", AIMS Mater. Sci., 4(3), 755-788. https://doi.org/10.3934/matersci.2017.3.755.
  25. Huang, Z.D., Zhang, B., Liang, R., Zheng, Q. Bin, Oh, S.W., Lin, X.Y., Yousefi, N. and Kim, J.K., (2012), "Effects of reduction process and carbon nanotube content on the supercapacitive performance of flexible graphene oxide papers", Carbon, 50(11), 4239-4251. https://doi.org/10.1016/j.carbon.2012.05.006.
  26. IMARC (2022), India Tyre market: Industry trends, share, size, Growth, Opportunity and Forecast 2023- 2028, International Market Analysis Research and Consulting, Uttar Pradesh, India.
  27. Jiang, G., Pan, J., Deng, W., Sun, Yanzhi, Guo, J., Che, K., Yang, Y., Lin, Z., Sun, Yancai, Huang, C. and Zhang, T. (2022), "Recovery of high pure pyrolytic carbon black from waste tires by dual acid treatment", J. Clean. Prod., 374, 133893. https://doi.org/10.1016/j.jclepro.2022.133893.
  28. Kanagasundaram, K. and Solaiyan, E. (2023), "Smart cement-sensor composite: The evolution of nanomaterial in developing sensor for structural integrity", Struct. Concr., 24(5), 1-41. https://doi.org/10.1002/suco.202201145.
  29. Khalid, A., Khushnood, R.A. and Ali Memon, S. (2022), "Pyrolysis as an alternate to open burning of crop residue and scrap tires: Greenhouse emissions assessment and mechanical performance investigation in concrete", J. Clean. Prod., 365. https://doi.org/10.1016/j.jclepro.2022.132688.
  30. Kok, M.V. and O zgur, E. (2013), "Thermal analysis and kinetics of biomass samples", Fuel Proc. Technol., 106, 739-743. https://doi.org/10.1016/j.fuproc.2012.10.010.
  31. Li, C., Fan, Z., Wu, S., Li, Y., Gan, Y. and Zhang, A. (2018), "Effect of carbon black nanoparticles from the pyrolysis of discarded tires on the performance of asphalt and its mixtures", Appl. Sci., 8(4), 1-16. https://doi.org/10.3390/app8040624.
  32. Lim, S. and Mondal, P. (2014), "Micro- and nano-scale characterization to study the thermal degradation of cement-based materials", Mater. Charact., 92, 15-25. https://doi.org/10.1016/j.matchar.2014.02.010.
  33. Long, W.J., Xiao, B.X., Gu, Y.C. and Xing, F. (2018), "Micro- and macro-scale characterization of nano- SiO2 reinforced alkali activated slag composites", Mater. Charact., 136, 111-121. https://doi.org/10.1016/j.matchar.2017.12.013.
  34. Ma, Y., Zhao. H., Zhang, X., Fan, C., Zhuang, T., Sun, C. and Zhao, S. (2022), "Structure optimization of pyrolysis carbon black from waste tire and its application in natural rubber composites", Appl. Surf. Sci., 593, 153389. https://doi.org/10.1016/j.apsusc.2022.153389
  35. Mahmood, A., Khushnood, R.A. and Zeeshan, M. (2020), "Pyrolytic carbonaceous reinforcements for enhanced electromagnetic and fracture response of cementitious composites", J. Clean. Prod., 248, 119288. https://doi.org/10.1016/j.jclepro.2019.119288.
  36. Maroufi, S., Mayyas, M. and Sahajwalla, V. (2017), "Nano-carbons from waste tyre rubber: An insight into structure and morphology", Waste Manag., 69, 110-116. https://doi.org/10.1016/j.wasman.2017.08.020.
  37. Martinez, J.D., Cardona-Uribe, N., Murillo, R., Garcia, T. and Lopez, J.M., (2019), "Carbon black recovery from waste tire pyrolysis by demineralization: Production and application in rubber compounding", Waste Manag., 85, 574-584. https://doi.org/10.1016/j.wasman.2019.01.016.
  38. Moasas, A.M., Amin, M.N., Khan, K., Ahmad, W., Al-Hashem, M.N.A., Deifalla, A.F. and Ahmad, A. (2022), "A worldwide development in the accumulation of waste tires and its utilization in concrete as a sustainable construction material: A review", Case Stud. Constr. Mater., 17, e01677. https://doi.org/10.1016/j.cscm.2022.e01677.
  39. Mohajerani, A., Burnett, L., Smith, J. V., Markovski, S., Rodwell, G., Rahman, M.T., Kurmus, H., Mirzababaei, M., Arulrajah, A., Horpibulsuk, S. and Maghool, F. (2020), "Recycling waste rubber tyres in construction materials and associated environmental considerations: A review", Resour. Conserv. Recycl., 155, 104679. https://doi.org/10.1016/j.resconrec.2020.104679.
  40. Nogueira, M., Matos, I., Bernardo, M., Pinto, F., Lapa, N., Surra, E. and Fonseca, I. (2019), "Char from spent tire rubber: A potential adsorbent of remazol yellow dye", J. Carbon Res., 5(4), 76. https://doi.org/10.3390/c5040076.
  41. Owens, D.K. and Wendt, R.C. (1969), "Estimation of the surface free energy of polymers", J. Appl. Polym. Sci., 13, 1741-1747. https://doi.org/https://doi.org/10.1002/app.1969.070130815.
  42. Papanikolaou, I., Ribeiro de Souza, L., Litina, C. and Al-Tabbaa, A. (2021), "Investigation of the dispersion of multi-layer graphene nanoplatelets in cement composites using different superplasticizer treatments", Constr. Build. Mater., 293, 123543. https://doi.org/10.1016/j.conbuildmat.2021.123543.
  43. Parthasarathy, P., Choi, H.S., Park, H.C., Hwang, J.G., Yoo, H.S., Lee, B.K. and Upadhyay, M. (2016), "Influence of process conditions on product yield of waste tyre pyrolysis- A review", Korean J. Chem. Eng., 33(8), 2268-2286. https://doi.org/10.1007/s11814-016-0126-2.
  44. Paul, S., Rahaman, M., Ghosh, S.K., Katheria, A., Das, T.K., Patel, S. and Das, N.C. (2023), "Recycling of waste tire by pyrolysis to recover carbon black: an alternative reinforcing filler", J. Mater. Cycles Waste Manag., 25, 1470-1481. https://doi.org/10.1007/s10163-023-01635-6.
  45. Rai, R.S. and Bajpai, V. (2023), "One-step microwave synthesis of surface functionalized carbon fiber fabric by ZnO nanostructures", Adv. Nano Res., 14(6), 557-573. https://doi.org/10.12989/anr.2023.14.6.557
  46. Rbihi, S., Aboulouard, A., Laallam, L. and Jouaiti, A. (2020), "Contact Angle Measurements of Cellulose based Thin Film composites: Wettability, surface free energy and surface hardness", Surf. Interf., 21, 100708. https://doi.org/10.1016/j.surfin.2020.100708.
  47. Rosa, P. de F., Cirqueira, S.S.R., Aguiar, M.L. and Bernardo, A. (2014), "Solvothermal synthesis and characterization of silver nanoparticles", Adv. Nano Res., 802(3), 135-139. https://doi.org/10.4028/www.scientific.net/MSF.802.135
  48. Ryms, M., Januszewicz, K., Kazimierski, P., Luczak, J., Klugmann-Radziemska, E. and Lewandowski, W.M. (2020), "Post-pyrolytic carbon as a phase change materials (PCMs) carrier for application in building materials", Materials, 13(6), 1268. https://doi.org/10.3390/ma13061268
  49. Ryms, M., Januszewicz, K., Haustein, E., Kazimierski, P. and Lewandowski, W.M. (2022), "Thermal properties of a cement composite containing phase change materials (PCMs) with post-pyrolytic char obtained from spent tyres as a carrier", Energy, 239, 121936. https://doi.org/10.1016/j.energy.2021.121936.
  50. Sardar, H., Khushnood, R.A., Khaliq, W., Khan, H.A. and Saleem, M.F. (2022), "Influence of pyrolytic waste tire residue on the residual performance of high strength concrete exposed to elevated temperatures", J. Build. Eng., 54, 104657. https://doi.org/10.1016/j.jobe.2022.104657.
  51. Shilpa, Kumar, R. and Sharma, A. (2018), "Morphologically tailored activated carbon derived from waste tires as high-performance anode for Li-ion battery", J. Appl. Electrochem., 48(1), 1-13. https://doi.org/10.1007/s10800-017-1129-3.
  52. Singh, J., Kumar, M., Sharma, A., Pandey, G., Chae, K. and Lee, S. (2016), Activated Carbons from Waste Tyre Pyrolysis: Application, Intech, London, U.K.
  53. Tauc, J., Grigorovici, R. and Vancu, A. (1966), "Optical properties and electronic structure of amorphous germanium", Phys. Status Solidi B, 15(2), 627-637. https://doi.org/10.1002/pssb.19660150224.
  54. Tauc, J. and Scott, T.A. (1967), "The optical properties of solids", Phys. Today, 20(10), 105-107. https://doi.org/10.1063/1.3033945.
  55. Torres, I.Z., Dominguez, A.S., Bueno, J.J.P., Meas, Y., Lopez, M.L.M. and Dector, A. (2021), "Analyzing corrosion rates of TiO2 nanotubes/titanium separation passive layer under surface and crystallization changes", Adv. Nano Res. 10(3), 211-219. https://doi.org/10.12989/anr.2021.10.3.211
  56. Trubetskaya, A., Kling, J., Ershag, O., Attard, T.M. and Schroder, E. (2019), "Removal of phenol and chlorine from wastewater using steam activated biomass soot and tire carbon black", J. Hazard. Mater. 365, 846-56. https://doi.org/10.1016/j.jhazmat.2018.09.061
  57. Uvarov, V. and Popov, I. (2007), "Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials", Mater. Charact., 58(10), 883-891. https://doi.org/10.1016/j.matchar.2006.09.002.
  58. Uvarov, V. and Popov, I. (2013), "Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials", Mater. Charact., 85, 111-123. https://doi.org/10.1016/j.matchar.2013.09.002.
  59. Wang, H., Lu, G., Feng, S., Wen, X. and Yang, J. (2019), "Characterization of bitumen modified with pyrolytic carbon black from scrap tires", Sustain., 11(6), 1-13. https://doi.org/10.3390/su11061631.
  60. Wang, M., Zhang, L., Li, A., Irfan, M., Du, Y. and Di, W. (2019) 'Comparative pyrolysis behaviors of tire tread and side wall from waste tire and characterization of the resulting chars', J. Environ. Manage., 232, 364-371. https://doi.org/10.1016/j.jenvman.2018.10.091.
  61. Wang, Z., Wu, M., Chen, G., Zhang, M., Sun, T., Burra, K.G., Guo, S., Chen, Y., Yang, S., Li, Z., Lei, T. and Gupta, A.K. (2023), "Co-pyrolysis characteristics of waste tire and maize stalk using TGA, FTIR and Py-GC/MS analysis", Fuel, 337, 127206. https://doi.org/10.1016/j.fuel.2022.127206.
  62. Wu, I.F. and Liao, Y.C. (2021), "A chemical milling process to produce water-based inkjet printing ink from waste tire carbon blacks", Waste Manag., 122, 64-70. https://doi.org/10.1016/j.wasman.2020.12.041
  63. Zhao, J., Huang, G., Guo, Y., Gupta, R., Liu, W.V. (2023), "Developing thermal insulation cement-based mortars using recycled carbon black derived from scrapped off-the-road tires", Constr. Build. Mater., 393, 132043. https://doi.org/10.1016/j.conbuildmat.2023.132043