DOI QR코드

DOI QR Code

Chemical signalling within the rumen microbiome

  • Katie Lawther (School of Biological Sciences/Institute for Global Food Security, Queen's University Belfast) ;
  • Fernanda Godoy Santos (School of Biological Sciences/Institute for Global Food Security, Queen's University Belfast) ;
  • Linda B Oyama (School of Biological Sciences/Institute for Global Food Security, Queen's University Belfast) ;
  • Sharon A Huws (School of Biological Sciences/Institute for Global Food Security, Queen's University Belfast)
  • 투고 : 2023.09.18
  • 심사 : 2023.12.12
  • 발행 : 2024.02.01

초록

Ruminants possess a specialized four-compartment forestomach, consisting of the reticulum, rumen, omasum, and abomasum. The rumen, the primary fermentative chamber, harbours a dynamic ecosystem comprising bacteria, protozoa, fungi, archaea, and bacteriophages. These microorganisms engage in diverse ecological interactions within the rumen microbiome, primarily benefiting the host animal by deriving energy from plant material breakdown. These interactions encompass symbiosis, such as mutualism and commensalism, as well as parasitism, predation, and competition. These ecological interactions are dependent on many factors, including the production of diverse molecules, such as those involved in quorum sensing (QS). QS is a density-dependent signalling mechanism involving the release of autoinducer (AIs) compounds, when cell density increases AIs bind to receptors causing the altered expression of certain genes. These AIs are classified as mainly being N-acyl-homoserine lactones (AHL; commonly used by Gram-negative bacteria) or autoinducer-2 based systems (AI-2; used by Gram-positive and Gram-negative bacteria); although other less common AI systems exist. Most of our understanding of QS at a gene-level comes from pure culture in vitro studies using bacterial pathogens, with much being unknown on a commensal bacterial and ecosystem level, especially in the context of the rumen microbiome. A small number of studies have explored QS in the rumen using 'omic' technologies, revealing a prevalence of AI-2 QS systems among rumen bacteria. Nevertheless, the implications of these signalling systems on gene regulation, rumen ecology, and ruminant characteristics are largely uncharted territory. Metatranscriptome data tracking the colonization of perennial ryegrass by rumen microbes suggest that these chemicals may influence transitions in bacterial diversity during colonization. The likelihood of undiscovered chemicals within the rumen microbial arsenal is high, with the identified chemicals representing only the tip of the iceberg. A comprehensive grasp of rumen microbial chemical signalling is crucial for addressing the challenges of food security and climate targets.

키워드

참고문헌

  1. Huws SA, Creevey CJ, Oyama LB, et al. Addressing global ruminant agricultural challenges through understanding the rumen microbiome: past, present, and future. Front Microbiol 2018;9:2161. https://doi.org/10.3389/fmicb.2018.02161 
  2. Mizrahi I, Wallace RJ, Morais S. The rumen microbiome: balancing food security and environmental impacts. Nat Rev Microbiol 2021;19:553-66. https://doi.org/10.1038/s41579-021-00543-6 
  3. Weimer PJ. Redundancy, resilience, and host specificity of the ruminal microbiota: implications for engineering improved ruminal fermentations. Front Microbiol 2015;6:296. https://doi.org/10.3389/fmicb.2015.00296 
  4. Russell JB, Cotta MA, Dombrowski DB. Rumen bacterial competition in continuous culture: Streptococcus bovis versus Megasphaera elsdenii. Appl Environ Microbiol 1981;41:1394-9. https://doi.org/10.1128/aem.41.6.1394-1399.1981 
  5. Martin BD, Schwab E. Symbiosis: "Living together" in chaos. Stud Hist Biol 2012;4:7-25. 
  6. Huws SA, Edwards JE, Lin W, et al. Microbiomes attached to fresh perennial ryegrass are temporally resilient and adapt to changing ecological niches. Microbiome 2021;9:143. https://doi.org/10.1186/s40168-021-01087-w 
  7. Mulkern AJ, Oyama LB, Cookson AR, et al. Microbiome-derived antimicrobial peptides offer therapeutic solutions for the treatment of Pseudomonas aeruginosa infections. NPJ Biofilms Microbiomes 2022;8:70. https://doi.org/10.1038/s41522-022-00332-w 
  8. Waters CM, Bassler BL. Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 2005;21:319-46. https://doi.org/10.1146/annurev.cellbio.21.012704.131001 
  9. Ng WL, Bassler BL. Bacterial quorum-sensing network architectures. Annu Rev Genet 2009;43:197-222. https://doi.org/10.1146/annurev-genet-102108-134304 
  10. Solano C, Echeverz M, Lasa I. Biofilm dispersion and quorum sensing. Curr Opin Microbiol 2014;18:96-104. https://doi.org/10.1016/j.mib.2014.02.008 
  11. Zhang Y, Li C, Yuan Z, Wang R, Angelidaki I, Zhu G. Syntrophy mechanism, microbial population, and process optimization for volatile fatty acids metabolism in anaerobic digestion. Chem Eng J 2023;452:139137. https://doi.org/10.1016/j.cej.2022.139137 
  12. Dong YH, Zhang LH. Quorum sensing and quorum-quenching enzymes. J Microbiol 2005;43:101-9. 
  13. Tarr PI, Gordon CA, Chandler WL. Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet 2005;365:1073-86. https://doi.org/10.1016/s0140-6736(05)71144-2 
  14. Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol 2001;55:165-99. https://doi.org/10.1146/annurev.micro.55.1.165 
  15. McBrayer DN, Cameron CD, Tal-Gan Y. Development and utilization of peptide-based quorum sensing modulators in Gram-positive bacteria. Org Biomol Chem 2020;18:7273-90. https://doi.org/10.1039/D0OB01421D 
  16. Tal-Gan Y, Ivancic M, Cornilescu G, Blackwell HE. Characterization of structural elements in native autoinducing peptides and non-native analogues that permit the differential modulation of AgrC-type quorum sensing receptors in Staphylococcus aureus. Org Biomol Chem 2016;14:113-21. https://doi.org/10.1039/C5OB01735A 
  17. Winzer K, Williams P. Quorum sensing and the regulation of virulence gene expression in pathogenic bacteria. Int J Med Microbiol 2001;291:131-43. https://doi.org/10.1078/1438-4221-00110 
  18. De Kievit TR. Quorum sensing in Pseudomonas aeruginosa biofilms. Environ Microbiol 2009;11:279-88. https://doi.org/10.1111/j.1462-2920.2008.01792.x 
  19. Bhargava N, Sharma P, Capalash N. Quorum sensing in Acinetobacter: an emerging pathogen. Crit Rev Microbiol 2010;36:349-60. https://doi.org/10.3109/1040841x.2010.512269 
  20. Defoirdt T. Quorum-sensing systems as targets for antivirulence therapy. Trends Microbiol 2018;26:313-28. https://doi.org/10.1016/j.tim.2017.10.005 
  21. Whiteley M, Diggle SP, Greenberg EP. Bacterial quorum sensing: the progress and promise of an emerging research area. Nature 2017;551:313-20. https://doi.org/10.1038/nature24624 
  22. Ghali I, Shinkai T, Mitsumori M. Mining of luxS genes from rumen microbial consortia by metagenomic and metatranscriptomic approaches. Anim Sci J 2016;87:666-73. https://doi.org/10.3168/jds.2017-13356 
  23. Won MY, Oyama LB, Courtney SJ, Creevey CJ, Huws SA. Can rumen bacteria communicate to each other?. Microbiome 2020;8:23. https://doi.org/10.1186/s40168-020-00796-y 
  24. Liu X, Liu Q, Sun S, et al. Exploring AI-2-mediated interspecies communications within rumen microbial communities. Microbiome 2022;10:167. https://doi.org/10.1186/s40168-022-01367-z 
  25. Xie Y, Sun H, Xue M, Liu J. Metagenomics reveals differences in microbial composition and metabolic functions in the rumen of dairy cows with different residual feed intake. Anim Microbiome 2022;4:19. https://doi.org/10.1186/s42523-022-00170-3 
  26. Erickson DL, Nsereko VL, Morgavi DP, Selinger LB, Rode LM, Beauchemin KA. Evidence of quorum sensing in the rumen ecosystem: detection of N-acyl homoserine lactone autoinducers in ruminal contents. Can J Microbiol 2002;48:374-8. https://doi.org/10.1139/w02-022 
  27. Yang Y, Zhou M, Hardwidge PR, Cui H, Zhu G. Isolation and characterization of N-acyl homoserine lactone-producing bacteria from cattle rumen and swine intestines. Front Cell Infect Microbiol 2018;8:155. https://doi.org/10.3389/fcimb.2018.00155 
  28. Dziva F, van Diemen PM, Stevens MP, Smith AJ, Wallis TS. Identification of Escherichia coli O157: H7 genes influencing colonization of the bovine gastrointestinal tract using signature-tagged mutagenesis. Microbiology 2004;150:3631-45. https://doi.org/10.1099/mic.0.27448-0 
  29. Edrington TS, Farrow RL, Sperandio V, et al. Acyl-homoserine-lactone autoinducer in the gastrointestinal tract of feedlot cattle and correlation to season, E. Coli O157: H7 prevalence, and diet. Curr Microbiol 2009;58:227-32. https://doi.org/10.1007/s00284-008-9312-8 
  30. Gonzalez LA, Manteca X, Calsamiglia S, Schwartzkopf-Genswein KS, Ferret A. Ruminal acidosis in feedlot cattle: Interplay between feed ingredients, rumen function and feeding behavior (a review). Anim Feed Sci Technol 2012;172:66-79. https://doi.org/10.1016/j.anifeedsci.2011.12.009 
  31. Ran T, Zhou CS, Xu LW, et al. Initial detection of the quorum sensing autoinducer activity in the rumen of goats in vivo and in vitro. J Integr Agric 2016;15:2343-52. https://doi.org/10.1016/S2095-3119(16)61417-X 
  32. Seshadri R, Leahy SC, Attwood GT, et al. Cultivation and sequencing of rumen microbiome members from the Hungate 1000 Collection. Nat Biotechnol 2018;36:359-67. https://doi.org/10.1038/nbt.4110 
  33. Shi W, Moon CD, Leahy SC, et al. Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome. Genome Res 2014;24:1517-25. https://doi.org/10.1101/gr.168245.113 
  34. Gharechahi J, Vahidi MF, Bahram M, Han JL, Ding XZ, Salekdeh GH. Metagenomic analysis reveals a dynamic microbiome with diversified adaptive functions to utilize high lignocellulosic forages in the cattle rumen. ISME J 2021;15:1108-20. https://doi.org/10.1038/s41396-020-00837-2 
  35. Sayers EW, Cavanaugh M, Clark K, et al. GenBank. Nucleic Acids Res 2022;50:D161-4. https://doi.org/10.1093/nar/gkab1135 
  36. Mitsumori M, Xu L, Kajikawa H, et al. Possible quorum sensing in the rumen microbial community: detection of quorum-sensing signal molecules from rumen bacteria. FEMS Microbiol Lett 2003;219:47-52. https://doi.org/10.1016/s0378-1097(02)01192-8 
  37. Gorenc G, Lukas F, Avgustin G. Examination of ai-2 quorum sensing system in Prevotella bryantii and Prevotella ruminicola-like strains by using bioluminiscence assay. Acta Agric Slov 2007;90:107-13.  https://doi.org/10.14720/aas.2007.90.2.14960
  38. Asanuma N, Yoshii T, Hino T. Molecular characterization and transcription of the luxS gene that encodes LuxS autoinducer 2 synthase in Streptococcus bovis. Curr Microbiol 2004;49:366-71. https://doi.org/10.1007/s00284-004-4356-x 
  39. Harrington A, Tal-Gan Y. Identification of Streptococcus gallolyticus subsp. gallolyticus (biotype I) competence-stimulating peptide pheromone. J Bacteriol 2018;200:10-128. https://doi.org/10.1128%2FJB.00709-17  https://doi.org/10.1128%2FJB.00709-17
  40. Geisinger E, George EA, Muir TW, Novick RP. Identification of ligand specificity determinants in AgrC, the Staphylococcus aureus quorum-sensing receptor. J Biol Chem 2008;283:8930-8. https://doi.org/10.1074/jbc.M710227200 
  41. Gomes-Fernandes M, Laabei M, Pagan N, et al. Accessory gene regulator (Agr) functionality in Staphylococcus aureus derived from lower respiratory tract infections. PLoS One 2017;12:e0175552. https://doi.org/10.1371/journal.pone.0175552 
  42. Otto M. Critical assessment of the prospects of quorum-quenching therapy for staphylococcus aureus infection. Int J Mol Sci 2023;24:4025. https://doi.org/10.3390/ijms24044025 
  43. Burrell PC. The detection of environmental autoinducing peptide quorum-sensing genes from an uncultured Clostridium sp. in landfill leachate reactor biomass. Lett Appl Microbiol 2006;43:455-60. https://doi.org/10.1111/j.1472-765X.2006.01968.x 
  44. Hughes DT, Terekhova DA, Liou L, et al. Chemical sensing in mammalian host-bacterial commensal associations. Proc Natl Acad Sci 2010;107:9831-6. https://doi.org/10.1073/pnas.1002551107 
  45. Sperandio V. SdiA sensing of acyl-homoserine lactones by enterohemorrhagic E. coli (EHEC) serotype O157. Gut Microbes 2010;1:432-5. https://doi.org/10.4161/gmic.1.6.14177 
  46. Nguyen Y, Sperandio V. Enterohemorrhagic E. coli (EHEC) pathogenesis. Front Cell Infect Microbiol 2012;2:90. https://doi.org/10.3389/fcimb.2012.00090 
  47. Huws SA, Mayorga OL, Theodorou MK, et al. Successional colonization of perennial ryegrass by rumen bacteria. Lett Appl Microbiol 2013;56:186-96. https://doi.org/10.1111/lam.12033 
  48. Huws SA, Edwards JE, Creevey CJ, et al. Temporal dynamics of the metabolically active rumen bacteria colonizing fresh perennial ryegrass. FEMS Microbiol Ecol 2016;92:fiv137. https://doi.org/10.1093/femsec/fiv137 
  49. Mayorga OL, Kingston-Smith AH, Kim EJ, et al. Temporal metagenomic and metabolomic characterization of fresh perennial ryegrass degradation by rumen bacteria. Front Microbiol 2016;7:1854. https://doi.org/10.3389/fmicb.2016.01854 
  50. Landini P, Antoniani D, Burgess JG, Nijland R. Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal. Appl Microbiol Biotechnol 2010;86:813-23. https://doi.org/10.1007/s00253-010-2468-8 
  51. Nkrumah JD, Okine EK, Mathison GW, et al. Relationships of feedlot feed efficiency, performance, and feeding behavior with metabolic rate, methane production, and energy partitioning in beef cattle. J Anim Sci 2006;84:145-53. https://doi.org/10.2527/2006.841145x 
  52. Yogeswara IBA, Maneerat S, Haltrich D. Glutamate decarboxylase from lactic acid bacteria-A key enzyme in GABA synthesis. Microorganisms 2020;8:1923. https://doi.org/10.3390/microorganisms8121923 
  53. Skandamis PN, Nychas GJ. Quorum sensing in the context of food microbiology. Appl Environ Microbiol 2012;78:5473-82. https://doi.org/10.1128/AEM.00468-12 
  54. Goo E, An JH, Kang Y, Hwang I. Control of bacterial metabolism by quorum sensing. Trends Microbiol 2015;23:567-76. https://doi.org/10.1016/j.tim.2015.05.007 
  55. Ellis JL, Kebreab E, Odongo NE, McBride BW, Okine EK, France J. Prediction of methane production from dairy and beef cattle. J Dairy Sci 2007;90:3456-66. https://doi.org/10.3168/jds.2006-675