DOI QR코드

DOI QR Code

Crack Behavior and Tension-stiffening in Ultra-High-Performance Concrete: Influence of Cover Thickness and Steel Fiber Volume Fraction

피복두께와 강섬유 혼입률에 따른 초고성능 콘크리트의 균열거동과 인장증강효과

  • Zhu, Zhao-Lin (Dept. of Architectural Engineering, Hanyang University) ;
  • Lee, Moon-Seok (Dept. of Architectural Engineering, Hanyang University) ;
  • Son, Dong-Hee (Dept. of Architectural Engineering, Hanyang University) ;
  • Choi, Chang-Sik (Dept. of Architectural Engineering, Hanyang University) ;
  • Choi, Hyun-Ki (Dept. of Fire and Disaster Prevention Engineering, KyungNam University) ;
  • Bae, Baek-Il (Dept. of Digital Architectural and Urban Engineering, Hanyang Cyber University)
  • 주조린 (한양대학교 대학원 건축공학과) ;
  • 이문석 (한양대학교 대학원 건축공학과) ;
  • 손동희 (한양대학교 대학원 건축공학과) ;
  • 최창식 (한양대학교 건축공학부) ;
  • 최현기 (경남대학교 소방방재공학과 ) ;
  • 배백일 (한양사이버대학교 디지털건축도시공학과)
  • Received : 2023.09.01
  • Accepted : 2023.10.16
  • Published : 2024.01.30

Abstract

This study involved conducting material tests on ultra-high-performance concrete through direct tensile tests. The key variables examined were the volume fraction of steel fiber and the cover thickness. This analysis focused on load-strain relationships, concrete tensile strength, average crack spacing, and maximum crack width. The results reveal that as the volume fraction of steel fiber increases and the cover thickness becomes greater, the concrete's ability to withstand tensile forces significantly improves, resulting in a more robust tension-stiffening effect. Furthermore, the crack behavior during the crack formation stage and stabilized cracking stage indicates improved crack control performance. After the initial crack formation stage, the concrete appears to no longer control additional tensile forces and cracks, with the primary responsibility for crack control shifting to the steel fibers. This transition enhances the tension-stiffening effect by bridging actions of the steel fibers after the initial crack formation stage.

Keywords

Acknowledgement

이 논문은 2023년도 정부(과학기술정보통신부) 연구비 지원에 의한 결과의 일부임. (과제번호: NRF-2022R1A2C3008940, RS-2023-00207763)

References

  1. Association Francaise de Genie Civil (AFGC). (2002). Ultra High Performance Fibre-Reinforced Concretes-Interim Recommendations. AFGC Scientific and Technical Documents.
  2. Bischoff, P. H. (2003). Tension Stiffening and Cracking of Steel Fiber-Reinforced Concrete. Journal of materials in civil engineering, 15(2), 174-182.  https://doi.org/10.1061/(ASCE)0899-1561(2003)15:2(174)
  3. Chao, S. H., Naaman, A. E., & Parra-Montesinos, G. J. (2009). Bond Behavior of Reinforcing Bars in Tensile Strain-Hardening Fiber-Reinforced Cement Composites. ACI Structural Journal, 106(6), 897. 
  4. Collins, M. P., & Mitchell, D. (1991). Prestressed Concrete Structures, PrenticeHall, 145-147. 
  5. Deluce, J. R., & Vecchio, F. J. (2013). Cracking Behavior of Steel Fiber-Reinforced Concrete Members Containing Conventional Reinforcement. ACI Structural Journal, 110(3). 
  6. fib Model Code 2010. (2012). Limit state of cracking, federation internationale du beton (fib), 162-167. 
  7. Fields, K., & Bischoff, P. H. (2004). Tension Stiffening and Cracking of High-Strength Reinforced Concrete Tension Members. ACI Structural Journal, 101(4), 447-456. 
  8. Ghali, A., Favre, R., & Eldbadry, M. (2006). Concrete Structures. 3rd ed, Londen, Spon Press, 266-271. 
  9. Kang, S. T., Hong, K. N., Han, S. H., & Kim, S. W. (2008). The Effect of Fiber Volume Fraction on the Tension Softening Behavior of Steel Fiber-Reinforced Ultra High Strength Concrete. Journal of the Korea Concrete Institute, 21(1), 13-20. 
  10. Korean Agency for Technology and Standard. (KATS). (2018). Method of Tensile Test for Metallic Materials, KS B 0802. 
  11. Korean Agency for Technology and Standard. (KATS). (2017). Standard Test Method for Compressive Strength of Concrete, KS F 2405. 
  12. Korea Concrete Institute. (2012). Design Recommendations for Ultra-High Performance Concrete K-UHPC, Korea Concrete Institute, 51-63. 
  13. Kim, W., Lee, K. Y., & Yeom, H. S. (2001). A study on the bonding characteristics and crack behavior of high strength concrete tension member (1)-to the center of tension stiffening effect. Journal of the Korean Society of Civil Engineers, KSCE, 21. 
  14. Lee, G. Y., Kim, M. J., Kim, W., & Lee, H. M. (2011). Tension Stiffening Effect Considering Cover Thickness in Reinforced Concrete Tension Members. Journal of the Korea Concrete Institute, 23(6), 791-797.  https://doi.org/10.4334/JKCI.2011.23.6.791
  15. Lee, M. S., Bae, B. I., & Choi, C. S. (2023). Experimental Study on the Tensile Stiffening Effect of UHPC Tensile Members with Steel Fibers. Journal of the Architectural Institute of Korea, 43(1), 495-495. 
  16. Lee, S. C., Kim, J. H., Cho, J. Y., & Shin. K. J. (2010). Tension Stiffening of Reinforced High Performance Fiber Reinforced Cementitious Composites (HPFRCC). Journal of the Korea Concrete Institute, 22(6), 859-866.  https://doi.org/10.4334/JKCI.2010.22.6.859
  17. Qiu, M., Zhang, Y., Qu, S., Zhu, Y., & Shao, X. (2020). Effect of Reinforcement Ratio, Fiber Orientation, and Fiber Chemical Treatment on the Direct Tension Behavior of Rebar-Reinforced UHPC. Construction and Building Materials, 256, 119311. 
  18. Yun, H. D., Yang, I. S., Han, B. C., Jeon, E., & Kim, S. W. (2005). Experimental Study on Tension Stiffening Behavior in High-Performance Fiber-Reinforced Cementitious Composites (HPFRCCs), Journal of the Architectural Institute of Korea Structure & Construction, 21(10), 27-36. 
  19. Zhu, Z. L., & Choi, C. S. (2023). Tension Stiffening Effect of UHPC with Volume Fraction of Steel Fiber and Reinforcement Ratio. Journal of the Architectural Institute of Korea, 43(1), 872-872.