DOI QR코드

DOI QR Code

Epsilon Iron Oxide (ε-Fe2O3) as an Electromagnetic Functional Material: Properties, Synthesis, and Applications

  • Ji Hyeong Jeong (Nano Materials Research Division, Korea Institute of Materials Science) ;
  • Hwan Hee Kim (Nano Materials Research Division, Korea Institute of Materials Science) ;
  • Jung-Goo Lee (Nano Materials Research Division, Korea Institute of Materials Science) ;
  • Youn-Kyoung Baek (Nano Materials Research Division, Korea Institute of Materials Science)
  • Received : 2024.09.19
  • Accepted : 2024.12.05
  • Published : 2024.12.28

Abstract

Iron oxide (ε-Fe2O3) is emerging as a promising electromagnetic material due to its unique magnetic and electronic properties. This review focuses on the intrinsic properties of ε-Fe2O3, particularly its high coercivity, comparable to that of rare-earth magnets, which is attributed to its significant magnetic anisotropy. These properties render it highly suitable for applications in millimeter wave absorption and high-density magnetic storage media. Furthermore, its semiconducting behavior offers potential applications in photocatalytic hydrogen production. The review also explores various synthesis methods for fabricating ε-Fe2O3 as nanoparticles or thin films, emphasizing the optimization of purity and stability. By exploring and harnessing the properties of ε-Fe2O3, this study aims to contribute to the advancement of next-generation electromagnetic materials with potential applications in 6G wireless telecommunications, spintronics, high-density data storage, and energy technologies.

Keywords

Acknowledgement

This research was supported by the Basic Research Program (PNK9960) of Korea Institute of Materials Science.

References

  1. S. Piraman, S. Sundar, R. Mariappan, Y. Y. Kim and K. Min: Sens. Actuators, B Chem., 234 (2016) 386. https://doi.org/10.1016/j.snb.2016.04.168
  2. K. Sivula, F. Le Formal and M. Grätzel: ChemSusChem, 4 (2011) 432. https://doi.org/10.1002/cssc.201000416
  3. J. Tuček, R. Zbořil, A. Namai and S. I. Ohkoshi: Chem. Mater., 22 (2010) 6483. https://doi.org/10.1021/cm101967h
  4. L. MacHala, J. Tuček and R. Zbořil: Chem. Mater., 23 (2011) 3255. https://doi.org/10.1021/cm200397g
  5. S. Sakurai, A. Namai, K. Hashimoto and S. I. Ohkoshi: J. Am. Chem. Soc., 131 (2009) 18299. https://doi.org/10.1021/ja9046069
  6. J. Jin, S. I. Ohkoshi and K. Hashimoto: Adv. Mater., 16 (2004) 48. https://doi.org/10.1002/adma.200305297
  7. A. S. Teja and P. Y. Koh: Prog. Cryst. Growth Charact. Mater., 55 (2009) 22. https://doi.org/10.1016/j.pcrysgrow.2008.08.003
  8. I. Ahamed, R. Pathak, R. Skomski and A. Kashyap: AIP Adv., 8 (2018) 148. https://doi.org/10.1063/1.5007659
  9. G. Carraro, C. MacCato, A. Gasparotto, T. Montini, S. Turner, O. I. Lebedev, V. Gombac, G. Adami, G. Van Tendeloo, D. Barreca and P. Fornasiero: Adv. Funct. Mater., 24 (2014) 372. https://doi.org/10.1002/adfm.201302043
  10. O. Malina, J. Tuček, P. Jakubec, J. Kašlík, I. Medřík, H. Tokoro, M. Yoshikiyo, A. Namai, S. I. Ohkoshi and R. Zbořil: RSC Adv., 5 (2015) 49719. https://doi.org/10.1039/C5RA07484C
  11. C. Liu, N. Zhang, Y. Li, R. Fan, W. Wang, J. Feng, C. Liu, J. Wang, W. Hao, Z. Li and Z. Zou: Nat. Commun., 14 (2023) 1. https://doi.org/10.5478/MSL.2023.14.4.153
  12. G. Carraro, D. Barreca, M. Cruz-Yusta, A. Gasparotto, C. MacCato, J. Morales, C. Sada and L. Sánchez: ChemPhysChem, 13 (2012) 3798. https://doi.org/10.1002/cphc.201200588
  13. M. M. Rahman, A. Jamal, S. B. Khan and M. Faisal: Superlattices Microstruct., 50 (2011) 369. https://doi.org/10.1016/j.spmi.2011.07.016
  14. M. Li, J. Wu and G. Shen: Catal. Sci. Technol., 12 (2022) 2659. https://doi.org/10.1039/D2CY00099G
  15. E. Gorbachev, M. Soshnikov, M. Wu, L. Alyabyeva, D. Myakishev, E. Kozlyakova, V. Lebedev, E. Anokhin, B. Gorshunov, O. Brylev, P. Kazin and L. Trusov: J. Mater. Chem. C, 9 (2021) 6173. https://doi.org/10.1039/D1TC01242H
  16. H. Tokoro, A. Namai and S. I. Ohkoshi: Dalt. Trans., 50 (2021) 452. https://doi.org/10.1039/D0DT03460F
  17. S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato and S. Sasaki: Angew. Chem., 119 (2007) 8544. https://doi.org/10.1002/ange.200703010
  18. L. Corbellini, C. Lacroix, C. Harnagea, A. Korinek, G. A. Botton, D. Ménard and A. Pignolet: Sci. Rep., 7 (2017) 3712. https://doi.org/10.1038/s41598-017-02742-9
  19. T. Jussila, A. Philip, J. Lindén and M. Karppinen: Adv. Eng. Mater., 25 (2023) 2201262. https://doi.org/10.1002/adem.202201262
  20. S. I. Ohkoshi, A. Namai and S. Sakurai: J. Phys. Chem. C, 113 (2009) 11235. https://doi.org/10.1021/jp901637y
  21. M. Yoshikiyo, K. Yamada, A. Namai and S. I. Ohkoshi: J. Phys. Chem. C, 116 (2012) 8688. https://doi.org/10.1021/jp300769z
  22. I. Ahamed, N. Seriani, R. Gebauer and A. Kashyap: RSC Adv., 10 (2020) 27474. https://doi.org/10.1039/D0RA04020G
  23. S. Sakurai, K. Tomita, K. Hashimoto, H. Yashiro and S. I. Ohkoshi: J. Phys. Chem. C, 112 (2008) 20212. https://doi.org/10.1021/jp806336f
  24. S. Sakurai, J. I. Shimoyama, K. Hashimoto and S. I. Ohkoshi: Chem. Phys. Lett., 458 (2008) 333. https://doi.org/10.1016/j.cplett.2008.04.121
  25. K. Kelm and W. Mader: Z. Anorg. Allg. Chem., 631 (2005) 2383. https://doi.org/10.1002/zaac.200500283
  26. Y. Zhao and G. Wen: J. Magn. Magn. Mater., 512 (2020) 167039. https://doi.org/10.1016/j.jmmm.2020.167039
  27. G. R. Jo, M. B. Yun, Y. Hun Son, B. Park, J. G. Lee, Y. G. Kim, Y. G. Son and Y. K. Baek: Chem. Commun., 58 (2022) 11442. https://doi.org/10.1039/D2CC03168J
  28. S. M. Suturin, A. M. Korovin, S. V. Gastev, M. P. Volkov, A. A. Sitnikova, D. A. Kirilenko, M. Tabuchi and N. S. Sokolov: Phys. Rev. Mater., 2 (2018) 1. https://doi.org/10.3807/COPP.2018.2.1.090
  29. S. Bhatti, R. Sbiaa, A. Hirohata, H. Ohno, S. Fukami and S. N. Piramanayagam: Mater. Today, 20 (2017) 530. https://doi.org/10.1016/j.mattod.2017.07.007
  30. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. Von Molnár, M. L. Roukes, A. Y. Chtchelkanova and D. M. Treger: Science, 294 (2001) 1488. https://doi.org/10.1126/science.1065389
  31. S. A. Wolf, J. Lu, M. R. Stan, E. Chen and D. M. Treger: IEEE, 98 (2010) 2155. https://doi.org/10.1109/JPROC.2010.2064150
  32. A. Fert: Rev. Mod. Phys., 80 (2008) 1517. https://doi.org/10.1103/RevModPhys.80.1517
  33. D. Barreca, G. Carraro, D. Peeters, A. Gasparotto, C. Maccato, W. M. M. Kessels, V. Longo, F. Rossi, E. Bontempi, C. Sada and A. Devi: Chem. Vap. Depos., 20 (2014) 313. https://doi.org/10.1002/cvde.201407108
  34. M. Gich, I. Fina, A. Morelli, F. Sánchez, M. Alexe, J. Gàzquez, J. Fontcuberta and A. Roig: Adv. Mater., 26 (2014) 4645. https://doi.org/10.1002/adma.201400990
  35. C. Kittel: Phys. Rev., 71 (1947) 270. https://doi.org/10.1103/PhysRev.71.270.2
  36. A. Namai, S. Sakurai, M. Nakajima, T. Suemoto, K. Matsumoto, M. Goto, S. Sasaki and S. I. Ohkoshi: J. Am. Chem. Soc., 131 (2008) 1170. https://doi.org/10.1021/ja807943v
  37. A. Namai, M. Yoshikiyo, K. Yamada, S. Sakurai, T. Goto, T. Yoshida, T. Miyazaki, M. Nakajima, T. Suemoto, H. Tokoro and S. I. Ohkoshi: Nat. Commun., 3 (2012) 1035. https://doi.org/10.1038/ncomms2038
  38. S. ichi Ohkoshi, A. Namai, M. Yoshikiyo, K. Imoto, K. Tamazaki, K. Matsuno, O. Inoue, T. Ide, K. Masada, M. Goto, T. Goto, T. Yoshida and T. Miyazaki: Angew. Chem. Int. Ed., 55 (2016) 11403. https://doi.org/10.1002/anie.201604647
  39. R. Kinugawa, K. Imoto, Y. Futakawa, S. Shimizu, R. Fujiwara, M. Yoshikiyo, A. Namai and S. I. Ohkoshi: Adv. Eng. Mater., 23 (2021) 2001473. https://doi.org/10.1002/adem.202001473
  40. G. Cherubini, C. C. Chung, W. C. Messner and S. O. R. Moheimani: IEEE Trans. Control Syst. Technol., 20 (2012) 296. https://doi.org/10.1109/TCST.2011.2176942
  41. H. Nishio and H. Yamamoto: IEEE Trans. Magn., 46 (2010) 3747. https://doi.org/10.1109/TMAG.2010.2051450
  42. S. I. Ohkoshi, K. Imoto, A. Namai, M. Yoshikiyo, S. Miyashita, H. Qiu, S. Kimoto, K. Kato and M. Nakajima: J. Am. Chem. Soc., 141 (2019) 1775. https://doi.org/10.1021/jacs.8b12910
  43. S. ichi Ohkoshi, M. Yoshikiyo, K. Imoto, K. Nakagawa, A. Namai, H. Tokoro, Y. Yahagi, K. Takeuchi, F. Jia, S. Miyashita, M. Nakajima, H. Qiu, K. Kato, T. Yamaoka, M. Shirata, K. Naoi, K. Yagishita and H. Doshita: Adv. Mater., 32 (2020) 139821.
  44. I. Tudosa, C. Stamm, A. B. Kashuba, F. King, H. C. Siegmann, J. Stöhr, G. Ju, B. Lu and D. Weeler: Nature, 428 (2004) 831. https://doi.org/10.1038/nature02438
  45. D. Alloyeau, C. Ricolleau, C. Mottet, T. Oikawa, C. Langlois, Y. Le Bouar, N. Braidy and A. Loiseau: Nat. Mater., 8 (2009) 940. https://doi.org/10.1038/nmat2574
  46. M.L. Plumer, J. van Ek and D. Weller, The Physics of Ultra-High-Density Magnetic Recording, Springer Science and Business Media, 41 (2001)
  47. S. U. T Hayashi, S. Hirono and M. Tomita: Nature, 381 (1996) 772. https://doi.org/10.1038/381772a0
  48. S. I. Ohkoshi, A. Namai, K. Imoto, M. Yoshikiyo, W. Tarora, K. Nakagawa, M. Komine, Y. Miyamoto, T. Nasu, S. Oka and H. Tokoro: Sci. Rep., 5 (2015) 14414. https://doi.org/10.1038/srep14414
  49. M. Yoshikiyo, A. Namai, K. Imoto, H. Tokoro and S. I. Ohkoshi: Eur. J. Inorg. Chem., 2018 (2018) 847. https://doi.org/10.1002/ejic.201701137
  50. M. Yoshikiyo, Y. Futakawa, R. Shimoharai, Y. Ikeda, J. MacDougall, A. Namai and S. Ohkoshi: Chem. Phys. Lett., 803 (2022) 139821. https://doi.org/10.1016/j.cplett.2022.139821
  51. W. Yang, Y. Yu, M. B. Starr, X. Yin, Z. Li, A. Kvit, S. Wang, P. Zhao and X. Wang: Nano Lett., 15 (2015) 7574. https://doi.org/10.1021/acs.nanolett.5b03988
  52. D. Cao, Z. Wang, L. Wen, Y. Mi and Y. Lei: Angew. Chem., 126 (2014) 11207. https://doi.org/10.1002/ange.201406044
  53. W. Ji, K. Yao, Y. F. Lim, Y. C. Liang and A. Suwardi: Appl. Phys. Lett., 103 (2013) 103.
  54. C. B. E., R. R. T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M. P. Cruz, Y. H. Chu, C. Ederer, N. A. Spaldin, R. R. Das, D. M. Kim and S. H. Baek: Nat. Mater., 5 (2006) 823. https://doi.org/10.1038/nmat1731
  55. Y. Ling, G. Wang, D. A. Wheeler, J. Z. Zhang and Y. Li: Nano Lett., 11 (2011) 2119. https://doi.org/10.1021/nl200708y
  56. G. Wang, Y. Ling, D. A. Wheeler, K. E. N. George, K. Horsley, C. Heske, J. Z. Zhang and Y. Li: Nano Lett., 11 (2011) 3503. https://doi.org/10.1021/nl202316j
  57. D. A. Wheeler, G. Wang, Y. Ling, Y. Li and J. Z. Zhang: Energy Environ. Sci., 5 (2012) 6682. https://doi.org/10.1039/c2ee00001f
  58. A. R. H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin and G. Ankonina: Nat. Mater., 12 (2013) 158. https://doi.org/10.1038/nmat3477
  59. M. S. Prévot and K. Sivula: J. Phys. Chem. C, 117 (2013) 17879. https://doi.org/10.1021/jp405291g
  60. K. Sivula, R. Zboril, F. Le Formal, R. Robert, A. Weidenkaff, J. Tucek, J. Frydrych and M. Grätzel: J. Am. Chem. Soc., 132 (2010) 7436. https://doi.org/10.1021/ja101564f
  61. L. T. Quynh, C. N. Van, Y. Bitla, J. W. Chen, T. H. Do, W. Y. Tzeng, S. C. Liao, K. A. Tsai, Y. C. Chen, C. L. Wu, C. H. Lai, C. W. Luo, Y. J. Hsu and Y. H. Chu: Adv. Energy Mater., 6 (2016) 1600686. https://doi.org/10.1002/aenm.201600686
  62. S.J. Clark and J. Robertson: Appl. Phys. Lett., 90 (2007) 132903. https://doi.org/10.1063/1.2716868
  63. Y. Xu and M. A. A. Schoonen: Am. Mineral., 85 (2000) 543. https://doi.org/10.2138/am-2000-0416
  64. M. Cargnello, A. Gasparotto, V. Gombac, T. Montini, D. Barreca and P. Fornasiero: Eur. J. Inorg. Chem., 28 (2011) 4309. https://doi.org/10.1002/ejic.201100532
  65. D. I. Kondarides, V. M. Daskalaki, A. Patsoura and X. E. Verykios: Catal. Letters, 122 (2008) 26. https://doi.org/10.1007/s10562-007-9330-3
  66. A. Patsoura, D. I. Kondarides and X. E. Verykios: Catal. Today, 124 (2007) 94. https://doi.org/10.1016/j.cattod.2007.03.028
  67. M. J. Katz, S. C. Riha, N. C. Jeong, A. B. F. Martinson, O. K. Farha and J. T. Hupp: Coord. Chem. Rev, 256 (2012) 2521. https://doi.org/10.1016/j.ccr.2012.06.017