DOI QR코드

DOI QR Code

A study on the manufacture of humidity sensors using layered silicate nanocomposite materials

층상 실리케이트계 나노복합 소재 적용 습도센서 제조에 관한 연구

  • Park, Byoung-Ki (Graduate School of Management of Technology, Hoseo University)
  • 박병기 (호서대학교 기술경영전문대학원 융합기술경영학과)
  • Received : 2024.01.15
  • Accepted : 2024.01.26
  • Published : 2024.01.31

Abstract

In this study, evaluated the properties of layered silicate-based nanocomposite sensitive film. For the fabrication of nanocomposite materials, we selected organically modified layered silicate materials, specifically Cloisite® and Bentone®, which were treated with quaternary ammonium salts. The impedance of the humidity sensors containing organically modified montmorillonite/hectorite clay decreased with increasing relative humidity(RH%). In the case of the Cloisite® humidity sensor exhibited slightly better impedance linearity and hysteresis compared to the Bentone® 38 humidity sensor. Additionally the impedance of the sensor with Bentone® 38 addition was the lowest when compared to the Cloisite®-modified sensor. Comparing the Cloisite®-modified sensors individually, we observed different moisture absorption characteristics based on the hydrophilic properties of the organic-treated materials. The response speed of Cloisite® 93A tended to be slower due to differences in moisture evaporation rates influenced by the hydrophilic organic components. Based on these results, moisture barriers utilizing organically modified layered silicate materials may exhibit slightly lower moisture absorption properties compared to conventional polymer-based moisture barriers. However, their excellent stability, simple processing, and cost-effectiveness make them suitable for humidity sensor applications.

본 연구에서는 층상 실리케이트계 나노복합소재 감습막제조를 통하여 그 특성을 평가하였다. 나노복합소재 제조를 위하여 나노물질로 4급 암모늄염으로 유기화 처리된 층상 실리케이트 물질인 Cloisite®, Bentone®으로 선정하였다. 유기화 처리된 montmorillonite/hectorite 점토 첨가 습도센서는 RH(%)증가에 따라 임피던스는 감소하였다. Cloisite® 습도센서의 경우 Bentone® 38 습도센서에 비해 임피던스 직진성 및 히스테리시스는 다소 우수하였다. 임피던스는 Bentone® 38을 첨가한 센서가 Cloisite® 첨가형 센서와 비교해 가장 낮게 나타났다. Cloisite® 첨가형 센서를 각각 비교하면 유기화 처리된 물질의 친수성 영향에 따라 감습 특성이 다르게 나타나는 것을 확인하였다. 응답 속도는 친수성 특징에 따라 Cloisite® 93A가 느려지는 경향을 나타냈으며, 이 결과 역시 친수성 유기물에 의한 수분 증발 속도 차이에 의한 것으로 사료된다. 이상의 결과를 바탕으로 유기화된 층상 실리케이트계 물질을 이용한 감습막은 기존의 고분자계 감습막과 비교해 감습특성은 다소 낮게 나타났으나 공중합, 가교구조화, 등 복잡한 공정 없이 안정성이 우수하고 간단한 공정으로 감습막 제조가 가능하여 경제성이 우수한 습도센서 응용이 가능할 것으로 사료된다.

Keywords

References

  1. W. J. Roesch, "Compound semiconductor activation energy in humidity", Microelectronics Reliability, Vol. 46, No. 8, pp. 1238-1246, 2006. https://doi.org/10.1016/j.microrel.2006.02.006
  2. J. Jormanainen, E. Mengotti, T. B. Soeiro, E. Bianda, D. Baumann, T. Friedli, A. Heinemann, A. Vulli, and J. Ingman, "High Humidity, High Temperature and High Voltage Reverse Bias - A Relevant Test for Industrial Applications", PCIM Europe 2018, pp.563-569, 2018.
  3. H. H. Funke, B. L. Grissom, C. E. McGrew, and M. W. Raynor, "Techniques for the measurement of trace moisture in high-purity electronic specialty gases", Review of scientific instruments, Vol. 74, No. 9, pp. 3909-33, 2003. https://doi.org/10.1063/1.1597939
  4. J. S. Park, H. Chae, H. K. Chung, and S. I. Lee, "Thin film encapsulation for flexible AM-OLED: a review", Semiconductor Science and Technology, Vol. 26, No. 3, pp. 034001, 2011.
  5. 김영훈, "4차 산업혁명을 이끄는 센서-시장구조는 어떻게 바뀌나?-", POSRI 이슈리포트, 2017.
  6. Imam, S. A., Choudhary, A., Sachan, V. K., "Design issues for wireless sensor networks and smart humidity sensors for precision agriculture: A Review", 2015 ICSCTI, pp. 181-187, 2015.
  7. Chandana, L. S., Sekhar, A. . R., "Weather Monitoring Using Wireless Sensor Networks based on IOT", Int. J. Sci. Res. Sci. Technol. Vol. 4, pp 525-531, 2018.
  8. Choi, Jin Moon, and Tae Wan Kim. "Humidity sensor using an air capacitor". Transactions on Electrical and Electronic Materials, Vol. 14, No. 4, 182-186, 2013. https://doi.org/10.4313/TEEM.2013.14.4.182
  9. Yawut, C., Kilaso, S., "Wireless Sensor Network for Weather and Disaster Alarm Systems", Int. Conf. Inf. Electron. Eng. Vol. 6, pp. 155-159, 2011.
  10. Y. Sakai, Y. Sadaoka, M. Matsuguchi, "Humidity sensors based on polymer thin films", Sensors and Actuators B, Vol. 35, pp. 85-91, 1996. https://doi.org/10.1016/S0925-4005(96)02019-9
  11. S. Sikarwar, B.C. Yadav. "Opto-electronic humidity sensor: A review", Sensors and Actuators A: Physical, Vol 233. pp. 54-70, 2015. https://doi.org/10.1016/j.sna.2015.05.007
  12. M. Ueda, etc., "Water-resistant humidity sensors based on sulfonated polyimides", Sensors and Actuators B, Vol. 127, pp. 463-470, 2007. https://doi.org/10.1016/j.snb.2007.04.042
  13. Y. Sakai, etc., "A humidity sensor using polytetrafluoroethylenegraft-quaternized-polyvinylpyridine",J. Electrochem. Soc., Vol. 138, pp. 2474-2478, 1991. https://doi.org/10.1149/1.2085997
  14. Y. Sakai, Y. Sadaoka, M. Matsuguchi, Y. Kanakura and M. Tamura, J. Electrochem. Soc., 138, 2472, 1991.
  15. Y. Sakai, Y. Sodaoka, M. Matsuguchi. H. Sakai, Sensors and Actuators B, 25, 689, 1995.
  16. J. E. Moneyron, A. de Roy, C. Forano, J. P. Besse, Realization of humidity sensors based on a screen-printed anionic clay, Appl. Clay Sci. 10, pp. 163-175, 1995. https://doi.org/10.1016/0169-1317(95)00012-S
  17. B.M. Kulwicki, Humidity sensors, J. Am. Ceram. Soc., pp. 697-708, 1991.
  18. 전영민, 공명선, "이온넨 단위를 가지는 광경화성 반응성 올리고머를 이용한 내수성 습도센서의 제조 및 감습 특성", Polymer, Vol. 33, No.1, 19-25, 2009.
  19. M. Bora, J. N. Ganguli, D. K. Dutta, Thermochim. Acta 346, pp. 169-175, 2000. https://doi.org/10.1016/S0040-6031(99)00410-4
  20. R. A. Vaia, E. P. Giannelis, "Polymer melt intercalation in organically-modified layered silicates: Model predictions and experiment", Macromolecules, 30(25), pp. 8000-8009, 1997. https://doi.org/10.1021/ma9603488