DOI QR코드

DOI QR Code

Modeling Residual Water in the Gas Diffusion Layer of a Polymer Electrolyte Membrane Fuel Cell and Analyzing Performance Changes

고분자 전해질막 연료전지의 기체확산층 내부 잔류수 모델링 및 성능변화해석

  • Jiwon Jang (School of Chemical Engineering, University of Ulsan) ;
  • Junbom Kim (School of Chemical Engineering, University of Ulsan)
  • 장지원 (울산대학교 화학공학부) ;
  • 김준범 (울산대학교 화학공학부)
  • Received : 2023.11.06
  • Accepted : 2023.12.26
  • Published : 2024.02.10

Abstract

Polymer electrolyte membrane fuel cells have the advantage of low operating temperatures and fast startup and response characteristics compared to others. Simulation studies are actively researched because their cost and time benefits. In this study, the resistance of water residual in the gas diffusion layer (GDL) of the unit cell was added to the existing equation to compare the actual data with the model data. The experiments were conducted with a 25 cm2 unit cell, and the samples were separated into stopping times of 0, 10, and 60 minutes following primary impedance measurement, activation, and polarization curve data acquisition. This gives 0, 10, and 60 minutes for the residual water in the GDL to evaporate. Without the rest period, the magnitude of the performance improvement was not significantly different at the same potential and flow rate, but the rest period did improve the performance of the membrane electrode assembly when measuring impedance. By changing the magnitude of the resistance reduction to an overvoltage, the voltage difference between the fuel cell model with and without residual water was compared, and the error rate in the high current density region, which is dominated by concentration losses, was reduced.

고분자전해질막 연료전지는 작동온도가 낮아, 다른 종류의 연료전지에 비해 빠른 시동과 응답 특성을 가진다는 장점이 있다. 시뮬레이션 연구는 비용과 시간 측면에서 이점이 있어 활발하게 연구되고 있다. 본 연구에서는 기존의 수식에 단위전지의 기체확산층에 잔류하는 물의 저항을 추가하여 실제 데이터와 모델데이터를 비교했다. 실험은 25 cm2 단위 전지로 진행됐으며, 1차 임피던스 측정, 활성화, 분극곡선 데이터 획득 후 정지 시간을 0, 10, 60분으로 가지는 샘플로 나눠 실험했다. 이는 기체확산층 내부의 잔류 중인 물이 증발할 시간을 0분, 10분, 60분 부여했다고 볼 수 있다. 휴식기간을 가지지 않는 경우, 같은 전위 및 같은 유량에서 성능 향상의 폭은 큰 차이를 보이지 않았으나, 휴식기간을 가진 막전극 접합체의 경우 임피던스 측정 시 성능 향상이 확인되었다. 저항 감소크기를 과전압으로 바꿔, 연료전지모델에 잔류수가 존재할 경우와 존재하지 않을 경우의 전압 차이를 비교했으며 그 결과로 농도손실이 주를 이루는 고전류밀도 영역의 오차율이 줄어든 것을 확인하였다.

Keywords

Acknowledgement

이 논문은 2023년 울산대학교 연구비에 의하여 연구되었음.

References

  1. S. Mekhilef, R. Saidur, and A. Safari, Comparative study of different fuel cell technologies, Renew. Sust. Energ. Rev., 16, 981-989 (2012).  https://doi.org/10.1016/j.rser.2011.09.020
  2. A. O. Odeh, P. Osifo, and H. Noemagus, Chitosan: A low cost material for the production of membrane for use in PEMFC-A review, Energ. Source. Part A, 35, 152-163
  3. O. Z. Sharaf and M. F. Orhan, An overview of fuel cell technology: Fundamentals and applications, Renew. Sust. Energ. Rev, 32, 810-853 (2014).  https://doi.org/10.1016/j.rser.2014.01.012
  4. E. Jannelli, M. Minutillo, and A. Perna, Analyzing microcogeneration systems based on LT-PEMFC and HT-PEMFC by energy balances, Appl. Energy, 108, 82-91 (2013).  https://doi.org/10.1016/j.apenergy.2013.02.067
  5. H. Ishaq and I. Dincer, Comparative assessment of renewable energy-based hydrogen production methods, Renew. Sust. Energ. Rev., 135, 13 (2021). 
  6. M. Gratzel, Mesoscopic solar cells for electricity and hydrogen production from sunlight, Chem. Lett., 34, 8-13 (2005).  https://doi.org/10.1246/cl.2005.8
  7. E. Hosseinzadeh and M. Rokni, Development and validation of a simple analytical model of the proton exchange membrane fuel cell (PEMFC) in a fork-lift truck power system, Int. J. Green Energy, 10, 523-543 (2013).  https://doi.org/10.1080/15435075.2012.678525
  8. L. Barelli, G. Bidini, and A. Ottaviano, Optimization of a PEMFC/battery pack power system for a bus application, Appl. Energy, 97, 777-784 (2012).  https://doi.org/10.1016/j.apenergy.2011.11.043
  9. Y. Feng and Z. Dong, Integrated design and control optimization of fuel cell hybrid mining truck with minimized lifecycle cost, Appl. Energy, 270, 11 (2020). 
  10. N. G. Moreno, M. C. Molina, D. Gervasio, and J. Francisco Perez Robles, Approaches to polymer electrolyte membrane fuel cells (PEMFCs) and their cost, Renew. Sust. Energ. Rev., 52, 897-906 (2015).  https://doi.org/10.1016/j.rser.2015.07.157
  11. P. C. Okonkwo, O. O. Ige, E. M. Barhoumi, P. C. Uzoma, W. Emori, A. Benamor, and A. M. Abdullah, Platinum degradation mechanisms in proton exchange membrane fuel cell (PEMFC) system: A review, Int. J. Hydrog. Energy, 46, 15850-15865 (2021).  https://doi.org/10.1016/j.ijhydene.2021.02.078
  12. U.S. Drive, Fuel cell technical team roadmap, New York: US Drive Partnership, 1-34 (2017). 
  13. X. Duan, F. Cao, R. Ding, X. Li, Q. Li, R. Aisha, S. Zhang, K. Hua, Z. Rui, Y. Wu, J. Li, A. Li, and J. Liu, Cobalt-doping stabilized active and durable sub-2 nm Pt nanoclusters for low-Pt-loading PEMFC cathode, Adv. Energy Mater., 12, 9 (2022). 
  14. J. P. Owejan, J. E. Owejan, and W. Gu, Impact of platinum loading and catalyst layer structure on PEMFC performance, J. Electrochem. Soc., 160, 824-833 (2013). 
  15. Q. Ye and T. Van Nguyen, Three-dimensional simulation of liquid water distribution in a PEMFC with experimentally measured capillary functions, J. Electrochem. Soc., 154, 1242-1251 (2007). 
  16. S. A. Atyabi and E. Afshari, A numerical multiphase CFD simulation for PEMFC with parallel sinusoidal flow fields, J. Therm. Anal. Calorim., 135, 1823-1833 (2019).  https://doi.org/10.1007/s10973-018-7270-3
  17. D. Chu and R. Jiang, Performance of polymer electrolyte membrane fuel cell PEMFC stacks Part I. Evaluation and simulation of an air-breathing PEMFC stack, J. Power Sources, 83, 128-133 (1999).  https://doi.org/10.1016/S0378-7753(99)00285-2
  18. R. F. Mann, J. C. Amphlett, M. A. I. Hooper, H. M. Jensen, B. A. Peppley, and P. R. Roberge, Development and application of a generalised steady-state electrochemical model for a PEM fuel cell, J. Power Sources, 86, 173-180 (2000).  https://doi.org/10.1016/S0378-7753(99)00484-X
  19. M. Ceraolo, C. Miulli, and A. Pozio, Modelling static and dynamic behaviour of proton exchange membrane fuel cells on the basis of electro-chemical description, J. Power Sources, 113, 131-144 (2003).  https://doi.org/10.1016/S0378-7753(02)00565-7
  20. J. Kim, S.-M. Lee, and S. Srinivasan, Modeling of proton exchange membrane fuel cell performance with an empirical equation, J. Electrochem. Soc., 142, 2670-2674 (1995).  https://doi.org/10.1149/1.2050072
  21. J. P. Owejan, T. A. Trabold, D. L. Jacobson, M. Arif, and S. G. Kandlikar, Effects of flow field and diffusion layer properties on water accumulation in a PEM fuel cell, Proceedings of the Fifth International Conference on Nanochannels, Microchannels and Minichannels. June 18-20, Puebla, Mexico (2007). 
  22. A. Androniea, I. Stamatin, V. Girleanu, V. Ionescu, and N. Buzbuchi, Simplified mathematical model for polarization curve validation and experimental performance evaluation of a PEM fuel cell system, Procedia Manuf., 32, 810-819 (2019).  https://doi.org/10.1016/j.promfg.2019.02.289
  23. R. O'Hayre, S.-W. Cha, W. G. Colella, and F. B. Prinz, Fuel Cell Fundamentals, 3rd ed, 29-258, hanteemedia, Korea (2017). 
  24. R. Omrani and B. Shabani, Review of gas diffusion layer for proton exchange membrane-based technologies with a focus on unitised regenerative fuel cells, Int. J. Hydrog. Energy, 44, 3834-3860 (2019).  https://doi.org/10.1016/j.ijhydene.2018.12.120
  25. K. Kim, Y.-J. Sohn, M. Kim, and W.-Y. Lee, Numerical study on the effects of GDL porosity on the PEMFC performance, J. Mech. Sci. Tech., 33, 1022-1030 (2009). 
  26. J. Ge, A. Higier, and H. Liu, Effect of gas diffusion layer compression on PEM fuel cell performance, J. Power Sources, 159, 922-927 (2006).  https://doi.org/10.1016/j.jpowsour.2005.11.069
  27. X. Zhu, P. C. Sui, and N. Djilali, Dynamic behaviour of liquid water emerging from a GDL pore into a PEMFC gas flow channel, J. Power Sources, 172, 287-295 (2007).  https://doi.org/10.1016/j.jpowsour.2007.07.024
  28. J. Kim and J. Kim, Effect of gas diffusion layer compression and inlet relative humidity on PEMFC performance, Appl. Chem. Eng., 32, 68-74 (2021). 
  29. Y. G. Yoon, W. Y. Lee, G. G. Park, T. H. Yang, and C. S. Kim, Effects of channel configurations of flow field plates on the performance of a PEMFC, Electrochim. Acta, 50, 709-712 (2004).  https://doi.org/10.1016/j.electacta.2004.01.111