DOI QR코드

DOI QR Code

Study of the Calendar Aging of Lithium-Ion Batteries Using SEI Growth Models

SEI 성장 모델을 이용한 리튬 이온 배터리의 캘린더 노화 연구

  • Received : 2023.10.30
  • Accepted : 2024.01.23
  • Published : 2024.02.10

Abstract

We predicted the calendar aging and long-term lifetime of lithium-ion batteries using an electrochemical-based SEI growth model. Numerical simulation was carried out employing the four different long-term SEI growth models (i.e., solvent diffusion limited model, electron migration limited model, Li-interstitial diffusion limited model, reaction limited model), and we calculated the capacity fade and loss of lithium inventory during calendar aging. The result showed that the electron migration limited model and Li-interstitial diffusion limited model showed lower capacity fade, while the solvent diffusion limited model and reaction limited model reached 80% of capacity fade within 10 years. During calendar aging, the lower storage temperature showed less capacity fade due to the hindrance of SEI growth rate. During cycling, the higher C-rate showed a shorter life cycle; however, the differences were not significant.

전기화학 기반의 SEI 성장 모델을 이용하여 리튬이온 배터리의 캘린더 노화 및 장기 수명을 예측하였다. 네 가지 유형의 장기 SEI 성장 모델(용매 확산 제한 모델, 전자 이동 제한 모델, 리튬-간극 확산 제한 모델, 반응 제한 모델)을 적용하여 수치해석이 이루어졌고, 캘린더 에이징 동안의 용량 감소와 리튬 재고 손실을 계산하였다. 수치해석 결과, 전자 이동 제한 모델과 리튬-간극 확산 제한 모델이 낮은 용량 감소를 보였으며, 용매 확산 제한 모델과 반응 제한 모델은 10년이내에 80%의 용량 감소를 보였다. 캘린더 노화 중 저온 보관 시 SEI의 성장을 저하시켜 용량 감소가 적었다. 사이클링 중 C-rate가 증가할수록 SEI 두께 증가로 수명 하락이 크게 나타났으나 그 차이는 크지 않았다.

Keywords

Acknowledgement

본 연구는 2023년도 교육부의 재원으로 한국연구재단의 지원(2023K2A9A2A22000117)과 산업통산자원부의 재원으로 산업집적지경쟁력강화사업(HUKB2305), 그리고 2022년 동국대학교 특별기금해외연수(연구년) 지원에 의하여 이루어졌음.

References

  1. M. Whittingham, Lithium batteries and cathode materials, Chem. Rev., 104, 4271-4302 (2004). https://doi.org/10.1021/cr020731c
  2. M. Armand and J. Tarascon, Building better batteries, Nature, 451, 652-657 (2008). https://doi.org/10.1038/451652a
  3. P. Keil, S. F. Schuster, J. Wilhelm, J. Travi, A. Hauser, R. C. Karl, and A. Jossen, Calendar aging of lithium-ion batteries, J. Electrochem. Soc., 163, A1872-A1880 (2016). https://doi.org/10.1149/2.0411609jes
  4. P. Keil and A. Jossen, Calendar aging of NCA lithium-ion batteries investigated by differential voltage analysis and coulomb tracking, J. Electrochem. Soc., 164, 6066-6074 (2017).
  5. E. Peled, The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-The solid electrolyte interphase model, J. Electrochem. Soc., 126, 2047-2051 (1979). https://doi.org/10.1149/1.2128859
  6. P. Verma, P. Maire, and P. Novak, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries, Electrochim. Acta, 55, 6332-6341 (2010). https://doi.org/10.1016/j.electacta.2010.05.072
  7. S. H. Kang, D. P. Abraham, A. Xiao, and B. L. Lucht, Investigating the solid electrolyte interphase using binder-free graphite electrodes, J. Power Sources, 175, 526-532 (2008). https://doi.org/10.1016/j.jpowsour.2007.08.112
  8. A, Xiao, L, Yang, B. L. Lucht, S. H. Kang, and D. P. Abraham, Examining the solid electrolyte interphase on binder-free graphite electrodes, J. Electrochem. Soc., 156, A318-A327 (2009). https://doi.org/10.1149/1.3078020
  9. M. Nie, D. Chalasani, D. P. Abraham, Y. Chen, A. Bose, and B. L. Lucht, Lithium ion battery graphite solid electrolyte interphase (SEI) revealed by microscopy and spectroscopy. J. Phys. Chem. C., 117, 1257-1267 (2013). https://doi.org/10.1021/jp3118055
  10. S. J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, and D. L. Wood III, The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling, Carbon, 105, 52-76 (2016). https://doi.org/10.1016/j.carbon.2016.04.008
  11. D. Li, D. Danilov, Z. Zhang, H. Chen, Y. Yang, and P. Notten, Modeling the SEI-formation on graphite electrodes in LiFePO4 batteries, J. Electrochem. Soc., 162, A858-A869 (2015). https://doi.org/10.1149/2.0161506jes
  12. D. Bedrov, O. Borodin, and J. B., Hooper, Li+ transport and mechanical properties of model solid electrolyte interphases (SEI): Insight from atomistic molecular dynamics simulations, J. Phys. Chem. C, 121, 16098-16109 (2017). https://doi.org/10.1021/acs.jpcc.7b04247
  13. M. Winter, The solid electrolyte interphase-The most important and the least understood solid electrolyte in rechargeable Li batteries, Phys. Chem., 223, 1395 (2009).
  14. T. Yoshida, M. Takahashi, S. Morikawa, C. Ihara, H. Katsukawa, T. Shiratsuchi, and J. Yamaki, Degradation mechanism and life prediction of lithium-ion batteries, J. Electrochem. Soc., 153, A576 (2006).
  15. K. Edstrom, M. Herstedt, and D. P. Abraham, A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries, J. Power Sources, 153, 380-384 (2006). https://doi.org/10.1016/j.jpowsour.2005.05.062
  16. H. J. Ploehn, P. Ramadass, and R. E. White, Solvent diffusion model for aging of lithium-ion battery cells, J. Electrochem. Soc., 151, A456-A462 (2004). https://doi.org/10.1149/1.1644601
  17. M. B. Pinson, and M., Bazant, Theory of SEI formation in rechargeable batteries: Capacity fade, accelerated aging and lifetime prediction, J. Electrochem. Soc., 160, A243-A250 (2012).
  18. M., Tang, S. Lu, and J., Newman, Experimental and theoretical investigation of solid-electrolyte-interphase formation mechanisms on glassy carbon, J. Electrochem. Soc., 159, A1775-A1785 (2012). https://doi.org/10.1149/2.025211jes
  19. F. Single, B. Horstmann, and A. Latz, Identifying the mechanism of continued SEI growth, Phys. Chem. Chem. Phys., 18, 17810-17814 (2016). https://doi.org/10.1039/C6CP02816K
  20. F., Single, B. Horstmann, and A. Latz, Revealing SEI morphology: In-depth analysis of a modeling approach, J. Electrochem. Soc., 164, E3132-E3145 (2017). https://doi.org/10.1149/2.0121711jes
  21. D. Li, D. Danilov, Z. Zhang, H. Chen, Y. Yang, and P. H. L. Notten, Modeling the SEI-formation on graphite electrodes in LiFePO4 batteries, J. Electrochem. Soc., 162, A858-A869 (2015). https://doi.org/10.1149/2.0161506jes
  22. M. Broussely, S. Herreyre, P. Biensan, P. Kasztejna, K. Nechev, and R. J. Staniewicz, Aging mechanism in Li ion cells and calendar life predictions, J. Power Sources, 97-98, 13-21 (2001). https://doi.org/10.1016/S0378-7753(01)00722-4
  23. J. Christensen and J. Newman, A mathematical model for the lithiumion negative electrode solid electrolyte interphase, J. Electrochem. Soc., 151, A1977 (2004).
  24. R. Ruder, D. Braatz, and U. Krewer, Multi-scale simulation of heterogeneous surface film growth mechanisms in lithium-ion batteries, J. Electrochem. Soc., 164, E3335-E3344 (2017). https://doi.org/10.1149/2.0241711jes
  25. F. A. Soto, Y. Ma, J. M. Martinez de la Hoz, J. M. Seminario, and P. B. Balbuena, Modeling solid-electrolyte interfacial phenomena in silicon anodes, Chem. Mater., 27, 7990-8000 (2015). https://doi.org/10.1021/acs.chemmater.5b03358
  26. S. Shi, P. Lu, Z. Liu, Y. Qi, L. G. Hector, H. Li, and S. J. Harris, Direct calculation of Li-ion transport in the solid electrolyte interphase, J. Am. Chem. Soc., 134, 15476-15487 (2012). https://doi.org/10.1021/ja305366r
  27. V. Sulzer, S. Marquis, R. Timms, M. Robinson, and S. Chapman, Python battery mathematical modelling (PyBaMM), J. Open Res. Softw., 9, 14 (2021).
  28. S. O'Kane, W. Ai, G. Madabattula, D. Alonso-Alvare, R. Timms, V. Sulzer, J. Edge, B. Wu, G. Offer, and M. Marinescuab, Lithium-ion battery degradation: How to model it, Phys. Chem. Chem. Phys., 24, 7909-7922 (2022). https://doi.org/10.1039/D2CP00417H
  29. S. Santhanagopalan, Q. Guo, P. Ramadass, and R. E. White, Review of models for predicting the cycling performance of lithium ion batteries, J. Power Sources, 156, 620-628 (2006). https://doi.org/10.1016/j.jpowsour.2005.05.070
  30. M. Guo, G. Sikha, and R. E. White, Single particle model for a lithium ion cell: Thermal behavior, J. Electrochem. Soc., 158, A122-A132 (2011). https://doi.org/10.1149/1.3521314
  31. P. Mohtat, S. Lee, V. Sulzer, J. Siegel, and A. Stefanopoulou, Differential expansion and voltage model for li-ion batteries at practical charging rates, J. Electrochem. Soc., 167, 110561 (2020).
  32. D. H. Jeon and D. Hwang, Life prediction of lithium-ion batteries using electrochemical-based degradation model, Trans. Korean Soc. Mech. Eng., A 47, 595-601 (2023).