DOI QR코드

DOI QR Code

Effect of loading frequency and clay content on the dynamic properties of sandy-clay mixtures using cyclic triaxial tests

  • 투고 : 2023.04.16
  • 심사 : 2023.11.16
  • 발행 : 2024.02.25

초록

Adopting a rational engineering methodology for building structures on sandy-clay soil layers has become increasingly important since it is crucial when structures erected on them often face seismic and cyclic wave loads. Such loads can cause a reduction in the stiffness, strength, and stability of the structure, particularly under un-drained conditions. Hence, this study aims to investigate how the dynamic properties of sand-clay mixtures are affected by loading frequency and clay content. Cyclic triaxial tests were performed on a total of 36 samples, comprising pure sand with a relative density of 60% and sand with varying percentages of clay. The tests were conducted under confining pressures of 50 and 100 kPa, and the samples' dynamic behavior was analyzed at loading frequencies of 0.1, 1, and 4 Hz. The findings indicate that an increase in confining pressure leads to greater inter-particle interaction and a reduced void ratio, which results in an increase in the soil's shear modulus. An increase in the shear strength and confinement of the samples led to a decrease in energy dissipation and damping ratio. Changes in loading frequency showed that as the frequency increased, the damping ratio decreased, and the strength of the samples increased. Increasing the loading frequency not only reflects changes in frequency but also reduces the relative permeability and enhances the resistance of samples. An analysis of the dynamic properties of sand and sand-clay mixtures indicates that the introduction of clay to a sand sample reduces the shear modulus and permeability properties.

키워드

참고문헌

  1. Aghaei Araei, A. and Ghodrati, A. (2018), "Loading frequency effect on dynamic properties of mixed sandy soils", Sci. Iran, 25, 2461-2479. https://doi.org/10.24200/sci.2017.4209. 
  2. Akbarimehr, D. and Fakharian, K. (2021), "Dynamic shear modulus and damping ratio of clay mixed with waste rubber using cyclic triaxial apparatus", Soil Dyn. Earthq. Eng., 140, 106435. https://doi.org/10.1016/j.soildyn.2020.106435. 
  3. Araei, A.A., Razeghi, H.R., Tabatabaei, S.H. and Ghalandarzadeh, A. (2012), "Loading frequency effect on stiffness, damping and cyclic strength of modeled rockfill materials", Soil Dyn. Earthq. Eng., 33, 1-18. https://doi.org/10.1016/j.soildyn.2011.05.009. 
  4. Cevik, A. and Cabalar, A.F. (2009), "Modelling damping ratio and shear modulus of sand-mica mixtures using genetic programming", Exp. Syst. Appl., 36, 7749-7757. https://doi.org/10.1016/j.eswa.2008.09.010. 
  5. Darendeli, M.B. (2001), Development of a new family of normalized modulus reduction and material damping curves, The university of Texas at Austin. 
  6. Dash, H.K. and Sitharam, T.G. (2011), "Undrained cyclic and monotonic strength of sand-silt mixtures", Geotech. Geol. Eng., 29, 555-570. https://doi.org/10.1007/s10706-011-9403-3. 
  7. DCF, L.O.P. (1997), "Damping ratio of soils from laboratory and in situ tests," in" Seismic behaviour of ground and geotechnical structures", Proceedings of the Special Technical Session on Earthquake Geotech. Engrg., 14th Int. Conf. on SMFE, Balkema. 
  8. Dutta, T.T., Saride, S. and Jallu, M. (2017), "Effect of saturation on dynamic properties of compacted clay in a resonant column test", Geomech. Geoeng., 12, 181-190. https://doi.org/10.1080/17486025.2016.1208849. 
  9. Geng, M., Wang, D. and Li, P. (2018), "Undrained dynamic behavior of reinforced subgrade under long-term cyclic loading", Adv. Mater. Sci. Eng., https://doi.org/10.1155/2018/5685789. 
  10. Hassanipour, A., Shafiee, A. and Jafari, M.K. (2011), Low-amplitude dynamic properties for compacted sand-clay mixtures. 
  11. Hight, D., Burland, J. and Georgiannou, V. (1991), Behaviour of clayey sands under undrained cyclic triaxial loading.
  12. Humar, J.: Dynamics of structures. CRC press (2012) 
  13. Kirar, B. and Maheshwari, B.K. (2013), Effects of silt content on dynamic properties of Solani sand. 
  14. Lei, H., Li, B., Lu, H. and Ren, Q. (2016), "Dynamic deformation behavior and cyclic degradation of ultrasoft soil under cyclic loading", J. Mater. Civ. Eng., 28, 4016135. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001641. 
  15. Li, X., Liu, J. and Nan, J. (2022), "Prediction of dynamic pore water pressure for calcareous sand mixed with fine-grained soil under cyclic loading", Soil Dyn. Earthq. Eng., 157, 107276. https://doi.org/10.1016/j.soildyn.2022.107276. 
  16. Malagnini, L. (1996), "Velocity and attenuation structure of very shallow soils: evidence for a frequency-dependent Q", Bull. Seismol. Soc. Am., 86, 1471-1486. https://doi.org/10.1785/BSSA0860051471. 
  17. Meidani, M., Shafiei, A., Habibagahi, G., Jafari, M.K., Mohri, Y., Ghahramani, A. and Chang, C.S. (2008), Granule shape effect on the shear modulus and damping ratio of mixed gravel and clay. 
  18. Mominul, H.M., Alam, M.J., Ansary, M.A. and Karim, M.E. (2013), "Dynamic properties and liquefaction potential of a sandy soil containing silt", Proceedings of the 18th international conference on soil mechanics and geotechnical engineering, Paris. 
  19. Mulilis, J.P., Townsend, F.C. and Horz, R.C. (1978), "Triaxial testing techniques and sand liquefaction", Dyn. Geotech. Test., 654, 265. 
  20. Okur, D.V. and Ansal, A. (2007), "Stiffness degradation of natural fine grained soils during cyclic loading", Soil Dyn. Earthq. Eng., 27, 843-854. https://doi.org/10.1016/j.soildyn.2007.01.005. 
  21. Pandya, S. and Sachan, A. (2022), "Effect of frequency and amplitude on dynamic behaviour, stiffness degradation and energy dissipation of saturated cohesive soil", Geomech. Geoeng., 17, 30-44. https://doi.org/10.1080/17486025.2019.1680885. 
  22. Seed, H.B. (1970), Soil moduli and damping factors for dynamic response analyses. Reoprt. EERC-70. 
  23. Shafiee, A., Tavakoli, H.R. and Jafari, M.K. (2008), "Undrained behavior of compacted sand-clay mixtures under monotonic loading paths", J. Appl. Sci., 8, 3108-3118. https://doi.org/10.3923/jas.2008.3108.3118. 
  24. Shivaprakash, B.G. and Dinesh, S.V. (2018), "Effect of plastic fines on initial shear modulus of sand-clay mixtures", KSCE J. Civ. Eng., 22, 73-82. https://doi.org/10.1007/s12205-017-1076-x. 
  25. Soroush, A. and Soltani-Jigheh, H. (2009), "Pre-and post-cyclic behavior of mixed clayey soils", Can. Geotech. J., 46, 115-128. https://doi.org/10.1139/T08-109. 
  26. Standard, A. (2003), "Standard test methods for the determination of the modulus and damping properties of soils using the cyclic triaxial apparatus", ASTM D3999/D3999M- 11 American Society for Testing. 
  27. STOKOE II, K.H., Hwang, S.K., Lee, J.K. and Andrus, R.D. (1995), "Effects of various parameters on the stiffness and damping of soils at small to medium strains", Pre-failure deformation of geomaterials, Proceedings of theh international symposium, 12-14 September, 1994, Sapporo, Japan. 
  28. Vucetic, M., Lanzo, G. and Doroudian, M. (1998), "Damping at small strains in cyclic simple shear test", J. Geotech. Geoenviron. Eng., 124, 585-594. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:7(585). 
  29. Wang, Y., Wang, Y.L. and Zhang, S.M. (2011), "Study of effects of fines content on dynamic elastic modulus and damping ratio of saturated sand", Rock Soil Mech., 32, 2623-2628. 
  30. Wu, Z., Zhang, D., Zhao, T., Ma, J. and Zhao, D. (2019), "An experimental research on damping ratio and dynamic shear modulus ratio of frozen silty clay of the Qinghai-Tibet engineering corridor", Transp. Geotech., 21, 100269. https://doi.org/10.1016/j.trgeo.2019.100269. 
  31. Xu, D., Liu, H., Rui, R. and Gao, Y. (2019), "Cyclic and postcyclic simple shear behavior of binary sand-gravel mixtures with various gravel contents", Soil Dyn. Earthq. Eng., 123, 230-241. https://doi.org/10.1016/j.soildyn.2019.04.030. 
  32. Zhu, Z., Zhang, F., Peng, Q., Dupla, J.C., Canou, J., Cumunel, G. and Foerster, E. (2021), "Effect of the loading frequency on the sand liquefaction behaviour in cyclic triaxial tests", Soil Dyn. Earthq. Eng., 147, 106779. https://doi.org/10.1016/j.soildyn.2021.106779.