DOI QR코드

DOI QR Code

Factors affecting hydraulic anisotropy of soil

  • Nurly Gofar (Department of Civil Engineering, Post Graduate Program, Universitas Bina Darma) ;
  • Alfrendo Satyanaga (Department of Civil and Environmental Engineering, Nazarbayev University) ;
  • Gerarldo D. Aventian (Department of Civil and Environmental Engineering, Nazarbayev University) ;
  • Gulnur Pernebekova (Department of Civil and Environmental Engineering, Nazarbayev University) ;
  • Zhanat Argimbayeva (Department of Civil and Environmental Engineering, Nazarbayev University) ;
  • Sung-Woo Moon (Department of Civil and Environmental Engineering, Nazarbayev University) ;
  • Jong Kim (Department of Civil and Environmental Engineering, Nazarbayev University)
  • Received : 2022.08.09
  • Accepted : 2023.12.30
  • Published : 2024.02.25

Abstract

The hydraulic anisotropic behavior of unsaturated soil has not been fully explored in relation to the grain-size distribution. The present study conducted laboratory assessments to examine the hydraulic anisotropy condition of statically compacted specimens in various initial states. The investigation incorporated the concept of hydraulic anisotropy by employing two discrete forms of soil stratification: horizontal-layering (HL) and vertical-layering (VL). The examined soils comprised sandy silt and silty sand, exhibiting either unimodal or bimodal soil-water characteristic curve (SWCC). This study aimed to investigate the potential correlation between the hydraulic anisotropy ratio and soil properties. The present study established a correlation between the hydraulic anisotropy ratio and several soil parameters, including fine content, dry density, plastic limit, and liquid limit. The study results indicate a non-linear relationship between the percentage of fine and dry density in soils with unimodal and bimodal soil-water characteristic curve (SWCC) and hydraulic anisotropy ratio.

Keywords

Acknowledgement

This research was supported by the Nazarbayev University Research Fund under Faculty Development Competitive Research Grants Program (FDCRGP) Grant No. 20122022FD4133. The authors are grateful for this support. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Nazarbayev University.

References

  1. Al-Mahbashi, A.M., Elkady, T.Y. and Alrefeai, T.O. (2015), "Soil water characteristic curve and improvement in lime treated expansive soil", Geomech. Eng., 8(5), 687-696. https://doi.org/10.12989/gae.2015.8.5.687.
  2. ASTM/D2487-11 (2011), "Standard practice for classification of soils for engineering purposes (Unified Soil Classification System)", Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA. https://doi.org/10.1520/D2487-17.
  3. ASTM/D422-63e2 (2007), "Standard test method for particle-size analysis of soils", Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA. https://doi.org/10.1520/D2487-17.
  4. ASTM/D4318-10e1 (2010), "Standard test methods for liquid limit, plastic limit, and plasticity index of soils", Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA. https://doi.org/10.1520/D4318-17E01.
  5. ASTM/D698-12e1 (2012), "Standard test methods for laboratory compaction characteristics of soil using standard effort", Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA. https://doi.org/10.1520/D2487-17.
  6. ASTM/D7664-10 (2010), "Standard test methods for measurement of hydraulic conductivity of unsaturated soils", Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA. https://doi.org/10.1520/D2487-17.
  7. ASTM/D854-14 (2014), "Standard test methods for specific gravity of soil solids by water pycnometer", Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA. https://doi.org/10.1520/D2487-17.
  8. Assouline, S. and Or, D. (2006), "Anisotropy factor of saturated and unsaturated soils", Water Resour. Res., 42, W12403. https://doi.org/10.1029/2006WR005001.
  9. Basak, P. (1972), "Soil structure and its effects on hydraulic conductivity", Soil Sci., 114(6), 417-422. https://doi.org/10.1097/00010694-197212000-00003.
  10. Bear, J. and Cheng, A.H. D. (2010), "Modeling groundwater flow and contaminant transport", New York: Springer. https://doi.org/10.1007/978-1-4020-6682-5.
  11. Chapuis, R.P., Gill, D.E. and Baass, K. (1989), "Laboratory permeability tests on sand: influence of the compaction method on anisotropy", Can. Geotech. J., 26, 614-622. https://doi.org/10.1139/t91-022.
  12. Deng, D., Wen, S., Lu, K. and Li, L. (2020), "Calculation model for the shear strength of unsaturated soil under nonlinear strength theory", Geomech. Eng., 21(3), 247-258. https://doi.org/10.12989/gae.2020.21.3.247.
  13. Deng, D., Lu, K. and Li, L. (2019), "LE analysis on unsaturated slope stability with introduction of nonlinearity of soil strength", Geomech. Eng., 19(2), 179-191. https://doi.org/10.12989/gae.2019.19.2.179.
  14. Fredlund, D.G. and Rahardjo, H. (1993), "Soil mechanics for unsaturated soils", New York: John Wiley and Sons Inc. https://doi.org/10.1002/9780470172759.
  15. Fredlund, D.G. and Xing, A. (1994), "Equations for the soil-water characteristic curve", Can. Geotech. J., 31, 521-532. https://doi.org/10.1139/t94-06.
  16. Hamdany, A.H., Wijaya, M., Satyanaga, A., Rahardjo, H., Zhai, Q., Lim, A. and Kim, J. (2023), "Numerical simulation on the effect of infiltration and evapotranspiration on the residual slope", Sustainability, 15(11), 8653. https://doi.org/10.3390/su15118653.
  17. Kim, Y. and Jeong, S. (2017), "Modeling of shallow landslides in an unsaturated soil slope using a coupled model", Geomech. Eng., 13(2), 353-370. https://doi.org/10.12989/gae.2017.13.2.353.
  18. Krisnanto, S., Rahardjo, H. and Leong, E.C. (2020), "Numerical study on the effect of crack network representation on water content in cracked soil", Geomech. Eng., 21(6), 537-549. https://doi.org/10.12989/gae.2020.21.6.537.
  19. Lee, J.S., Guimaraes, M. and Santamarina, J.C. (2007), "Micaceous sands: microscale mechanisms and macroscale response", J. Geotech. Geoenviron. Eng., 133(9), 1136-1143. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:9(1136).
  20. Leong, E.C. and Rahardjo, H. (1997), "Review of soil-water characteristic curve equations", J. Geotech. Geoenviron. Eng., 123(12), 1106-1117. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:12(1106).
  21. Li, X. and Zhang, L.M. (2009), "Characterization of dual-structure pore-size distribution of soil", Can. Geotech. J., 46(2), 129-141. https://doi.org/10.1139/T08-110.
  22. Mualem, Y. (1984), "Anisotropy of unsaturated soils", Soil Sci. Soc. Am. J., 48, 505-509. https://doi.org/10.2136/sssaj1984.03615995004800030007x.
  23. Mualem, Y. (1986), "Hydraulic conductivity of unsaturated soils: prediction and formulas. In Methods of soil analysis. Part 1: Physical and mineralogical methods", 2nd Ed., 799-823, Agronomy, American Society of Agronomy, Inc., and Soil Science Society of America, Madison, Wisc. https://doi.org/10.2136/sssabookser5.1.2ed.c31.
  24. Priono, Rahardjo, H., Chatterjea, K., Leong, E.C. and Wang, J.Y. (2016a), "Effect of hydraulic anisotropy on soil-water characteristic curve", Soils Found., 56(2), 228-239. https://doi.org/10.1016/j.sandf.2016.02.006.
  25. Priono, Rahardjo, H., Leong, E.C. and Chatterjea, K. (2016b), "Effects of mica content on hydraulic anisotropy of unsaturated soil", Proceedings of the 12th International Symposium on Landslides, Naples, Italy. https://doi.org/10.1201/9781315375007-197.
  26. Qi, S., Vanapalli, S.K., Yang, X.G., Zhou, J.W. and Lu, G.D. (2019), "Stability analysis of an unsaturated expansive soil slope subjected to rainfall infiltration", Geomech. Eng., 19(1). https://doi.org/10.12989/gae.2019.19.1.011.
  27. Rahardjo, H., Meilani, I., Rezaur, R.B. and Leong, E.C. (2009), "Shear strength characteristics of a compacted soil under infiltration conditions", Geomech. Eng., 1(1), 35-52. https://doi.org/10.12989/gae.2009.1.1.035.
  28. Roth, K. and Hammel, K. (1996), "Transport of conservative chemical through an unsaturated two-dimensional Miller-similar medium with steady-state flow", Water Resour. Res., 32(6), 1653-1663. https://doi.org/10.1029/96WR00756.
  29. Satyanaga, A. and Rahardjo, H. (2022), "Role of unsaturated soil properties in the development of slope susceptibility map", Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 175(3), 276-288. https://doi.org/10.1680/jgeen.20.00085.
  30. Satyanaga, A., Bairakhmetov, N., Kim, J.R. and Moon, S.W. (2022), "Role of bimodal water retention curve on the unsaturated shear strength", Appl. Sci., 12(3), 1266. https://doi.org/10.3390/app12031266.
  31. Satyanaga, A., Rahardjo, H., Koh, Z.H. and Mohamed, H. (2019a), "Measurement of a soil-water characteristic curve and unsaturated permeability using the evaporation method and the chilled-mirror method", J. Zhejiang Univ.-Sci. A, 20(5), 368-374. https://doi.org/10.1631/jzus.A1800593.
  32. Satyanaga, A., Rahardjo, H. and Hua, C.J. (2019b), "Numerical simulation of capillary barrier system under rainfall infiltration in Singapore", ISSMGE Int. J. Geoengineering Case Histories, 5(1), 43-54. https://doi.org/10.4417/IJGCH-05-01-04.
  33. Sharipov, A., Satyanaga, A., Abishev, R., Moon, S., Taib, A.M. and Kim, J. (2023). "Influence of slope geometry on stability of clayey soil slopes", Geotech. Geol. Eng., https://doi.org/10.1007/s10706-023-02438-0.
  34. Ursino, N., Roth, K., Gimmi, T. and Fluhner, H. (2000), "Upscaling of anisotropy in unsaturated Miller-similar porous media", Water Resour. Res., 36(2), 421-430. https://doi.org/10.1029/1999WR900320.
  35. Zhai, Q., Zhu, Y., Rahardjo, H., Satyanaga, A., Dai, G., Gong, W., Zhao, X. and Ou, Y. (2023), "Prediction of the soil-water characteristic curves for the fine-grained soils with different initial void ratios", Acta Geotechnica, https://doi.org/10.1007/s11440-023-01833-4.
  36. Zhai, Q., Rahardjo, H., Satyanaga, A. and Dai, G. (2020a), "Estimation of tensile strength of sandy soil from soil-water characteristic curve", Acta Geotechnica, 15, 3371-3381. https://doi.org/10.1007/s11440-020-01013-8.
  37. Zhai, Q., Rahardjo, H., Satyanaga, A., Dai, G.L. and Du, Y.J. (2020b), "Effect of the uncertainty in soil-water characteristic curve on the estimated shear strength of unsaturated soil", J. Zhejiang Univ.: Sci. A., https://doi.org/10.1631/jzus.A1900589.
  38. Zhai, Q., Rahardjo, H., Satyanaga, A., Dai, G. and Du, Y. (2020c), "Estimation of the wetting scanning curves for sandy soils", Eng. Geol., 272, 105635. https://doi.org/10.1016/j.enggeo.2020.105635.