DOI QR코드

DOI QR Code

Dynamic bending of sandwich nanocomposite rock tunnels by concrete beams

  • Liji Long (Southwest Research Institute for Hydraulic and Water Transport Engineering, Chongqing Jiaotong University) ;
  • D.L. Dung (Department of Mechanical Engineering, University of Hong Kong)
  • 투고 : 2023.02.14
  • 심사 : 2024.02.05
  • 발행 : 2024.02.25

초록

Dynamic response of a rock tunnels by laminated porous concrete beam reinforced by nanoparticles subjected to harmonic transverse dynamic load is investigated considering structural damping. The effective nanocomposite properties are evaluated on the basis of Mori-Tanaka model. The concrete beam is modeled by the exponential shear deformation theory (ESDT). Utilizing nonlinear strains-deflection, energy relations and Hamilton's principal, the governing final equations of the concrete laminated beam are calculated. Utilizing differential quadrature method (DQM) as well as Newmark method, the dynamic displacement of the concrete laminated beam is discussed. The influences of porosity parameter, nanoparticles volume percent, agglomeration of nanoparticles, boundary condition, geometrical parameters of the concrete beam and harmonic transverse dynamic load are studied on the dynamic displacement of the laminated structure. Results indicated that enhancing the nanoparticles volume percent leads to decrease in the dynamic displacement about 63%. In addition, with considering porosity of the concrete, the dynamic displacement enhances about 2.8 time.

키워드

참고문헌

  1. Aksoylu, C., Yazman, S., Ozkilic, Y.O., Gemi, L. and Arslan, M.H. (2020b), "Experimental analysis of reinforced concrete shear deficient beams with circular web openings strengthened by CFRP composite", Compos. Struct., 249, 112561. https://doi.org/10.1016/j.compstruct.2020.112561.
  2. Aksoylu, C., Ozkilic, Y.O. and Arslan, M.H. (2020a), "Damages on prefabricated concrete dapped-end purlins due to snow loads and a novel reinforcement detail", Eng. Struct., 225, 111225. https://doi.org/10.1016/j.engstruct.2020.111225.
  3. Aksoylu, C., Ozkilic, Y.O., Yazman, S., Gemi, L. and Arslan, M.H. (2021), "Inceltilmis Uclu Onuretimli Asik Kirislerinin Yuk Tasima Kapasitelerinin Deneysel ve Numerik Olarak Irdelenmesi ve Cozum Onerileri", Teknik Dergi., 32(3), 10823-10858. https://doi.org/10.18400/tekderg.667066. (In Turkish).
  4. Al-Furjan, M.S.H., Farrokhian, A., Mahmoud, S.R. and Kolahchi, R. (2021), "Dynamic deflection and contact force histories of graphene platelets reinforced conical shell integrated with magnetostrictive layers subjected to low-velocity impact", Thin. Wall. Struct., 163, 107706.https://doi.org/10.1016/j.tws.2021.107706.
  5. Alijani, M. and Rabani Bidgoli, M. (2018), "Agglomerated SiO2 nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis", Adv. Concr. Constr., 6(6), 585-610. http://dx.doi.org/10.12989/acc.2018.6.6.585.
  6. Alipour, M.M. and Shariyat, M. (2019), "Nonlocal zigzag analytical solution for Laplacian hygrothermal stress analysis of annular sandwich macro/nanoplates with poor adhesions and 2D-FGM porous cores", Arch. Civ. Mech. Eng., 19(4), 1211-1234. https://doi.org/10.1016/j.acme.2019.06.008.
  7. Amoli, A., Kolahchi, R. and Rabani Bidgoli, M. (2018), "Seismic analysis of AL2O3 nanoparticles-reinforced concrete plates based on sinusoidal shear deformation theory", Earthq. Struct., 15(3), 285-294. https://doi.org/10.12989/eas.2018.15.3.285.
  8. Anirudh, B., Ben Zineb, T., Polit, O., Ganapathi, M. and Prateek, G. (2020), "Nonlinear bending of porous curved beams reinforced by functionally graded nanocomposite grapheme platelets applying an efficient shear flexible finite element approach", Int. J. Nonlinear. Mech., 119, 103346. https://doi.org/10.1016/j.ijnonlinmec.2019.103346.
  9. Azree, M. and Wang, Y.C. (2012), "Mechanical properties of foamed concrete exposed to high temperatures", Constr. Build. Mater., 26(1), 638-654. https://doi.org/10.1016/j.conbuildmat.2011.06.067.
  10. Bai, Z., Liu, Y., Yang, J. and He, S. (2019), "Exploring the dynamic response and energy dissipation capacity of functionally graded EPS concrete", Constr. Build. Mater., 227, 116574. https://doi.org/10.1016/j.conbuildmat.2019.07.300.
  11. Bakhshande, Amnieh. H., Zamzam, M.S. and Kolahchi, R. (2018), "Dynamic analysis of non-homogeneous concrete blocks mixed by SiO2 nanoparticles subjected to blast load experimentally and theoretically", Constr. Build. Mater., 174, 633-644. https://doi.org/10.1016/j.conbuildmat.2018.04.140.
  12. Bedia, W.A., Houari, M.S.A., Bessaim, A., Bousahla, A.A., Tounsi, A., Saeed, T. and Alhodaly, M.S. (2019), "A new hyperbolic two-unknown beam model for bending and buckling analysis of a nonlocal strain gradient nanobeams", J. Nano Res., 57, 175-191, https://doi.org/10.4028/www.scientific.net/JNanoR.57.175.
  13. Bendaida, M., Bousahla, A.A., Mouffoki, A., Heireche, H., Bourada, F., Tounsi, A., Benachour, A., Tounsi, A. and Hussain, M. (2021), "Dynamic properties of nonlocal temperature-dependent FG nanobeams under various thermal environments", Trans. Porous Media, 142, 187-208. https://doi.org/10.1007/s11242-021-01666-3.
  14. Chan, R., Liu, X. and Galobardes, I. (2020), "Parametric study of functionally graded concretes incorporating steel fibres and recycled aggregates", Constr. Build. Mater., 242, 118186. https://doi.org/10.1016/j.conbuildmat.2020.118186.
  15. Craveiro, F., Nazarian, S., Bartolo, H., Bartolo, H., Bartolo, P.J. and Duarte, J.P. (2020), "An automated system for 3D printing functionally graded concrete-based materials", Addit. Manuf., 33, 101146. https://doi.org/10.1016/j.addma.2020.101146.
  16. Draiche, K., Bousahla, A.A., Tounsi, A. and Hussain, M. (2021), "An integral shear and normal deformation theory for bending analysis of functionally graded sandwich curved beams", Arch. Appl. Mech., 91, 4669-4691. https://doi.org/10.1007/s00419-021-02005-0.
  17. Fouaidi, M., Jamal, M. and Belouaggadia, N. (2020), "Nonlinear bending analysis of functionally graded porous beams using the multiquadric radial basis functions and a Taylor series-based continuation procedure", Compos. Struct., 252, 112593. https://doi.org/10.1016/j.compstruct.2020.112593.
  18. Fouaidi, M., Jamal, M., Zaite, A. and Belouaggadia, N. (2021), "Bending analysis of functionally graded graphene oxide powder-reinforced composite beams using a meshfree method", Aerosp. Sci. Technol., 110, 106479. https://doi.org/10.1016/j.ast.2020.106479.
  19. Gemi, L., Aksoylu, C., Yazman, S., Ozkilic, Y.O. and Arslan M.H. (2019), "Experimental investigation of shear capacity and damage analysis of thinned end prefabricated concrete purlins strengthened by CFRP composite", Compos. Struct., 229, 111399. https://doi.org/10.1016/j.compstruct.2019.111399.
  20. Hajmohammad, M.H., Sharif Zarei, M., Nouri, A. and Kolahchi, R. (2017), "Dynamic buckling of sensor/functionally graded-carbon nanotube-reinforced laminated plates/actuator based on sinusoidal-visco-piezoelasticity theories", J. Sandw. Struct. Mater., https://doi.org/10.1177/1099636217720373.
  21. Harith, I.K. (2018), "Study on polyurethane foamed concrete for use in structural applications", Case Stud. Constr. Mater., 8, 79-86. https://doi.org/10.1016/j.cscm.2017.11.005.
  22. Heidarzadeh, A., Kolahchi, R. and Rabani Bidgoli, M. (2018), "Concrete pipes reinforced with AL2O3 nanoparticles considering Agglomeration: Magneto-Thermo-Mechanical Stress Analysis", Int. J. Civ. Eng., 16(3), 315-322. https://doi.org/10.1007/s40999-016-0130-2.
  23. Jafarian Arani, A. and Kolahchi, R. (2016), "Buckling analysis of embedded laminated porous concrete beams armed with carbon nanotubes", Comput. Concret. 17, 567-578. https://doi.org/10.12989/cac.2016.17.5.567
  24. Jassas, M.R., Rabani Bidgoli, M. and Kolahchi, R. (2019), "Forced vibration analysis of concrete slabs reinforced by agglomerated SiO2 nanoparticles based on numerical methods", Constr. Build. Mater., 211, 796-806. https://doi.org/10.1016/j.conbuildmat.2019.03.263.
  25. Karegar, M., Rabani Bidgoli, M. and Mazaheri, H. (2021), "Smart control and seismic analysis of concrete frames with piezoelectric layer based on mathematical modelling and numerical method", Structures, 32, 1171-1179. https://doi.org/10.1016/j.istruc.2021.03.076
  26. Kargar, M. and Rabani Bidgoli, M. (2018), "Mathematical modeling of smart nanoparticles-reinforced concrete foundations: Vibration analysis", Geomech. Eng., 27(4), 465-477. https://doi.org/10.12989/gae.2018.27.4.465.
  27. Keshtegar, B., Motezaker, M., Kolahchi, R. and Trung, N.T. (2020a), "Wave propagation and vibration responses in porous smart nanocomposite sandwich beam resting on Kerr foundation considering structural damping", Thin Wall. Struct., 154, 106820.
  28. Keshtegar, B., Farrokhian, A., Kolahchi, R. and Trung, N.T. (2020b), "Dynamic stability response of truncated nanocomposite conical shell with magnetostrictive face sheets utilizing higher order theory of sandwich panels", Eur. J. Mech. A Solids., 82, 104010.
  29. Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020a), "Theoretical investigation on static analysis of pultruded GFRP composite beams", J. Eng. Sci., 8(3), 483-490. https://doi.org/10.21541/apjes.734770.
  30. Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020b), "Buckling and free vibration analyses of pultruded GFRP laminated composites: Experimental, numerical and analytical investigations", Compos. Struct., 254, 112806. https://doi.org/10.1016/j.compstruct.2020.112806.
  31. Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020c), "Experimental and theoretical investigation on flexure performance of pultruded GFRP composite beams with damage analyses", Compos. Struct., 242, 112162. https://doi.org/10.1016/j.compstruct.2020.112162.
  32. Madenci, E. and Ozkilic, Y.O. (2021), "Free vibration analysis of open-cell FG porous beams: analytical, numerical and ANN approaches", Geomech. Eng., 40(2), 157-173. https://doi.org/10.12989/gae.2021.40.2.157.
  33. Mahjoobi, M. and Rabani Bidgoli, M. (2019), "Vibration analysis of concrete foundation armed by silica nanoparticles based on numerical methods", Struct. Eng. Mech., 69(5), 547-555. http://dx.doi.org/10.12989/sem.2019.69.5.547.
  34. Metsebo, J., Nana Nbendjo, B.R. and Woafo, P. (2016), "Dynamic responses of a hinged-hinged Timoshenko beam with or without a damage subject to blast loading", Mech. Res. Commun., 71, 38-43. https://doi.org/10.1016/j.mechrescom.2015.10.001
  35. Mesbah, A., Belabed, Z., Amara, K., Tounsi, A., Bousahla, A.A. and Bourada, F. (2023), "Formulation and evaluation a finite element model for free vibration and buckling behaviours of functionally graded porous (FGP) beams", Struct. Eng. Mech., 86, 291-309, https://doi.org/10.12989/sem.2023.86.3.291.
  36. Motezaker, M., Kolahchi, R., Kumar Rajak, D. and Mahmoud, S. R. (2021), "Influences of fiber reinforced polymer layer on the dynamic deflection of concrete pipes containing nanoparticle subjected to earthquake load", Polym. Compos., https://doi.org/10.1002/pc.26118.
  37. Mouaici, F., Bouadi, A., Bendaida, M., Draiche, K., Bousahla, A.A., Bourada, F., Tounsi, A., Ghazwani, M.H. and Alnujaie, A. (2022), "Investigation of the mechanical behavior of functionally graded sandwich thick beams", Steel Compos. Struct., 44(5), 707-726, https://doi.org/10.12989/scs.2022.44.5.707.
  38. Ozkilic, Y.O., Aksoylu, C. and Arslan M.H. (2021a), "Numerical evaluation of effects of shear span, stirrup spacing and angle of stirrup on reinforced concrete beam behaviour", Struct. Eng. Mech., 79(3), 309-326. https://doi.org/10.12989/sem.2021.79.3.309.
  39. Ozkilic, Y.O., Aksoylu, C. and Arslan M.H. (2021b), "Experimental and numerical investigations of steel fiber reinforced concrete dapped-end purlins", J. Build. Eng., 36, 102119. https://doi.org/10.1016/j.jobe.2020.102119.
  40. Ozkilic, Y.O., Yazman, S., Aksoylu, C., Arslan M.H. and Gemi, L. (2021c), "Numerical investigation of the parameters influencing the behavior of dapped end prefabricated concrete purlins with and without CFRP strengthening", Constr. Build. Mater., 275, 122173. https://doi.org/10.1016/j.conbuildmat.2020.122173.
  41. Penna, R., Feo, L. and Lovisi, G. (2021), "Hygro-thermal bending behavior of porous FG nano-beams via local/nonlocal strain and stress gradient theories of elasticity", Compos. Struct., 263, 113627. https://doi.org/10.1016/j.compstruct.2021.113627.
  42. Pietras, D. and Sadowski, T. (2019), "A numerical model for description of mechanical behaviour of a Functionally Graded Autoclaved Aerated Concrete created on the basis of experimental results for homogenous Autoclaved Aerated Concretes with different porosities", Constr. Build. Mater., 204, 839-848. https://doi.org/10.1016/j.conbuildmat.2019.01.189.
  43. Polit, O., Anant, C., Anirudh, B. and Ganapathi, M. (2019), "Functionally graded graphene reinforced porous nanocomposite curved beams: Bending and elastic stability using a higher-order model with thickness stretch effect", Compos. B Eng., 166, 310-327. https://doi.org/10.1016/j.compositesb.2018.11.074.
  44. Reed, N. (2002), Mechanics of Laminated Composite Plates and Shells, CRC Press, 2003.
  45. Sahoo, S.K., Mohapatra, B.G., Patro, S.K. and Acharya, P.K. (2021), "Evaluation of graded layer in ground granulated blast furnace slag based layered concrete", Constr. Build. Mater., 276, 122218. https://doi.org/10.1016/j.conbuildmat.2020.122218.
  46. Sang, G., Zhu, Y., Yang, G. and Zhang, H. (2015), "Preparation and characterization of high porosity cement-based foam material", Constr. Build. Mater., 91, 133-137. https://doi.org/10.1016/j.conbuildmat.2015.05.032.
  47. Shagholani Loor, A., Rabani Bidgoli, M. and Mazaheri, H. (2020), "On the use of differential quadrature-three-term conjugate finite-step length methods for reliability analysis of steel fiber-reinforced sinusoidal rupture beams", Eng. Comput., https://doi.org/10.1007/s00366-020-01201-w.
  48. Sridhar, R. and Prasad, D.R. (2019), "Damage assessment of functionally graded reinforced concrete beams using hybrid fiber engineered cementitious composites", Structures, 20, 832-847. https://doi.org/10.1016/j.istruc.2019.07.002.
  49. Taherifar, R., Zareei, S.A., Bidgoli, M.R. and Kolahchi, R. (2020), "Seismic analysis in pad concrete foundation reinforced by nanoparticles covered by smart layer utilizing plate higher order theory", Geomech. Eng., 37(1), 99-115. https://doi.org/10.12989/gae.2020.37.1.099.
  50. Tounsi, A., Bousahla, A.A., Tahir, S.I., Hadj Mostefa, A., Bourada, F., Al-Osta, M.A. and Tounsi, A. (2023), "Influences of different boundary conditions and hygro-thermal environment on the free vibration responses of FGM sandwich plates resting on viscoelastic foundation", Int. J. Struct. Stab. Dynam., In press, https://doi.org/10.1142/S0219455424501177.
  51. Viet, N.V. and Zaki, W. (2021), "Bending model for functionally graded porous shape memory alloy/poroelastic composite cantilever beams", Appl. Math. Model., 97, 398-417. https://doi.org/10.1016/j.apm.2021.03.058.
  52. Zamani, A. and Rabani Bidgoli, M. (2017), "Vibration analysis of concrete foundations retrofit with NFRP layer resting on soil medium using sinusoidal shear deformation theory", Soil Dyn. Earthq. Eng., 103, 141-150. https://doi.org/10.1016/j.soildyn.2017.09.018.
  53. Zamanian, M., Kolahchi, R. and Rabani Bidgoli, M. (2017), "Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with SiO2 nanoparticles", Wind Struct., 24(1), 43-57. https://doi.org/10.12989/was.2017.24.1.043.
  54. Zhang, W., Qin, Q., Li, K., Li, J. and Wang, Q. (2021), "Effect of stepwise gradient on dynamic failure of composite sandwich beams with metal foam core subject to low-velocity impact", Int. J. Solids. Struct., 228, 111125. https://doi.org/10.1016/j.ijsolstr.2021.111125.