DOI QR코드

DOI QR Code

EEG 기반 사용자 중심 쾌적 환경 조성을 위한 실시간 모니터링 플랫폼

Real-Time Monitoring Platform for Enabling a User-Centric Comfort Environment Based on EEG

  • 투고 : 2023.11.05
  • 심사 : 2024.01.10
  • 발행 : 2024.02.29

초록

In the field of human-computer interaction, the role of sensor technology is critical in enhancing this interactivity. This study proposes a process for creating a personalized environmental setting using EEG-based emotional performance metrics. The experimental and methodology implemented in this study are of considerable importance in creating an environment tailored to the user's comfort. By utilizing various sensor technologies within a spatial, the study effectively visualizes and analyzes both humidity, temperature, and EEG data in real-time. This has resulted in the development of a real-time monitoring platform designed to effectively visualize the comfort of the space and the user's emotional state, as well as to compare and analyze integrated sensor data. The suggested real-time monitoring platform presents an effective alternative for providing an optimized environmental setting tailored to individual needs. Furthermore, it also creates a framework for practical approaches to improve user comfort and overall human experience.

키워드

과제정보

이 연구는 2022년도 한국연구재단 연구비 지원에 의한 결과의 일부임. 과제번호:2022R1A2C3011796

참고문헌

  1. Abdelrahman, M. M., Chong, A., & Miller, C. (2022). Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec. Building and Environment, 207, 108532.
  2. Aqara. (2023). Temperature and humidity sensor, Retrieved November, 2023 from https://www.aqara.com/en/product/temperature-humidity-sensor/
  3. Chai, T., & Shin, S. S. (2023). Implementation of a smart home network based on IEEE 802.15.4, Journal of Digital Contents Society, 24(9), 2169-2174. https://doi.org/10.9728/dcs.2023.24.9.2169
  4. Chon, K., & Choi, H. (2010). A study on ubiquitous psychological state recognition model using bio-signals. The Journal of Korean Institute of Communications and Information Sciences, 35(2), 232-243.
  5. Din, M. F. M., Lee, Y. Y., Ponraj, M., Ossen, D. R., Iwao, K., & Chelliapan, S. (2014). Thermal comfort of various building layouts with a proposed discomfort index range for tropical climate. Journal of thermal biology, 41, 6-15.
  6. Dong, B., Prakash, V., Feng, F., & O'Neill, Z. (2019). A review of smart building sensing system for better indoor environment control. Energy and Buildings, 199, 29-46. https://doi.org/10.1016/j.enbuild.2019.06.025
  7. Emotiv. (2023). EMOTIV EPOC+ 14-Channel wireless EEG headset, Retrieved November, 2023 from https://www.emotiv.com/epoc/
  8. EmotivBCI. (2023). Retrieved November, 2023 from https://emotiv.gitbook.io/emotivbci-node-red-toolbox/
  9. Engebretsen, K. A., Johansen, J. D., Kezic, S., Linneberg, A., & Thyssen, J. P. (2016). The effect of environmental humidity and temperature on skin barrier function and dermatitis. Journal of the European Academy of Dermatology and Venereology, 30(2), 223-249. https://doi.org/10.1111/jdv.13301
  10. Feriadi, H., & Wong, N. H. (2004). Thermal comfort for naturally ventilated houses in Indonesia. Energy and buildings, 36(7), 614-626. https://doi.org/10.1016/j.enbuild.2004.01.011
  11. HA. (2023). Home Assistant, Retrieved November, 2023 from https://www.home-assistant.io/
  12. Kim, J., Zhou, Y., Schiavon, S., Raftery, P., & Brager, G. (2018). Personal comfort models: Predicting individuals' thermal preference using occupant heating and cooling behavior and machine learning. Building and environment, 129, 96-106.
  13. Lee, S., Shin, W., & Park, E. J. (2022). Implications of neuroarchitecture for the experience of the built environment: a scoping review. Archnet-IJAR: International Journal of Architectural Research, 16(2), 225-244. https://doi.org/10.1108/ARCH-09-2021-0249
  14. Liu, P., Alonso, M. J., Mathisen, H. M., Halfvardsson, A., & Simonson, C. (2023). Understandg the role of moisture recovery in indoor humidity: An analytical study for a Norwegian single-family house during heating season. Building and Environment, 229, 109940.
  15. Mazon, J. (2014). The influence of thermal discomfort on the attention index of teenagers: an experimental evaluation. International journal of biometeorology, 58(5), 717-724. https://doi.org/10.1007/s00484-013-0652-0
  16. Miorandi, D., Sicari, S., De Pellegrini, F., & Chlamtac, I. (2012). Internet of things: Vision, applications and research challenges. Ad hoc networks, 10(7), 1497-1516. https://doi.org/10.1016/j.adhoc.2012.02.016
  17. Neale, C., Aspinall, P., Roe, J., Tilley, S., Mavros, P., Cinderby, S., Coyne, R., Thin, N., & Ward Thompson, C. (2020). The impact of walking in different urban environments on brain activity in older people. Cities & Health, 4(1), 94-106. https://doi.org/10.1080/23748834.2019.1619893
  18. Node-RED. (2023). Retrieved November, 2023 from https://nodered.org/
  19. Olszewska-Guizzo, A., Escoffier, N., Chan, J., & Puay Yok, T. (2018). Window View and the Brain: Effects of Floor Level and Green Cover on the Alpha and Beta Rhythms in a Passive Exposure EEG Experiment. International Journal of Environmental Research and Public Health, 15(11), 2358.
  20. Performance Metrics. (2023). Retrieved November, 2023 from https://emotiv.gitbook.io/emotivpro-v3/data-streams/performance-metrics
  21. Raspberry Pi, (2021). Raspberry Pi 3 model B+, Retrieved November, 2023 from https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/
  22. Shemesh, A., Talmon, R., Karp, O., Amir, I., Bar, M., & Grobman, Y. J. (2017). Affective response to architecture-investigating human reaction to spaces with different geometry. Architectural Science Review, 60(2), 116-125. https://doi.org/10.1080/00038628.2016.1266597
  23. Syed, A. S., Sierra-Sosa, D., Kumar, A., & Elmaghraby, A. (2021). IoT in smart cities: A survey of technologies, practices and challenges. Smart Cities, 4(2), 429-475. https://doi.org/10.3390/smartcities4020024
  24. Thom, E. C. (1959). The discomfort index. Weatherwise, 12(2), 57-61. https://doi.org/10.1080/00431672.1959.9926960
  25. Yoon, D. W., Kang, H. S., & Ahn, B. W. (2003). Development and evaluation of a PMV sensor for the control of indoor thermal environment. Korea Journal of Air-Conditioning and Refrigeration Engineering (KJACR), 15(10), 870-879.
  26. ZHA (2023). Zigbee Home Automation, Retrieved November, 2023 from https://www.home-assistant.io/integrations/zha/