DOI QR코드

DOI QR Code

Investigation of the effect of internal curing as a novel method for improvement of post-fire properties of high-performance concrete

  • Received : 2022.04.30
  • Accepted : 2023.10.18
  • Published : 2024.03.25

Abstract

Internal curing, a widely used method for mitigating early-age shrinkage in concrete, also offers notable advantages for concrete durability. This paper explores the potential of internal curing by partial replacement of sand with fine lightweight aggregate for enhancing the behavior of high-performance concrete at elevated temperatures. Such a technique may prove economical and safe for the construction of skyscrapers, where explosive spalling of high-performance concrete in fire is a potential hazard. To reach this aim, the physico-mechanical features of internally cured high-strength concrete specimens, including mass loss, compressive strength, strain at peak stress, modulus of elasticity, stress-strain curve, toughness, and flexural strength, were investigated under different temperature exposures; and to predict some of these mechanical properties, a number of equations were proposed. Based on the experimental results, an advanced stress-strain model was proposed for internally cured high-performance concrete at different temperature levels, the results of which agreed well with the test data. It was observed that the replacement of 10% of sand with pre-wetted fine lightweight expanded clay aggregate (LECA) not only did not reduce the compressive strength at ambient temperature, but also prevented explosive spalling and could retain 20% of its ambient compressive strength after heating up to 800℃. It was then concluded that internal curing is an excellent method to enhance the performance of high-strength concrete at elevated temperatures.

Keywords

References

  1. Akbulut, Y.E., Altunisik, A.C., Basaga, H.B., Mostofi, S., Mosallam, A. and Wafa, L.F. (2021), "Numerical investigation on dynamic characteristics changes of RC columns and frames under elevated temperature", Comput. Concrete, 28(2), 149-187. https://doi.org/10.12989/cac.2021.28.2.149.
  2. Akturk, B., Yuzer, N. and Kabay, N. (2016), "Usability of raw rice husk instead of polypropylene fibers in high-strength concrete under high temperature", J. Mater. Civil Eng., 28(1), 04015072. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001341.
  3. Anwar Hossain, K.M. (2009), "Influence of extreme curing conditions on compressive strength and pulse velocity of lightweight pumice concrete", Comput. Concrete, 6(6), 437-450. https://doi.org/10.12989/cac.2009.6.6.437.
  4. Aslani, F., Sun, J., Bromley, D. and Ma, G. (2019), "Fiber- reinforced lightweight self-compacting concrete incorporating scoria aggregates at elevated temperatures", Struct. Concrete, 20(3), 1022-1035. https://doi.org/10.1002/suco.201800231.
  5. ASTM 39/C39M (2012), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, American Society for Testing and Materials, West Conshohocken, PA, USA.
  6. ASTM 469/C469M-14 (2014), Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression, American Society for Testing and Materials, West Conshohocken, PA, USA.
  7. ASTM C1240-2003 (2003), Standard Specification for Use of Silica Fume as a Mineral Admixture in Hydraulic-Cement Concrete, Mortar, and Grout, American Society for Testing and Materials, West Conshohocken, PA, USA.
  8. ASTM C150/C150M-17 (2017), Standard Specification for Portland Cement, American Society for Testing and Materials, West Conshohocken, PA, USA.
  9. ASTM C192/C192M (2016), A Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, American Society for Testing and Materials, West Conshohocken, PA, USA.
  10. ASTM C293/C293M-16 (2008), Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with CenterPoint Loading), American Society for Testing and Materials, West Conshohocken, PA, USA.
  11. Aygormez, Y., Canpolat, O., Al-mashhadani, M.M. and Uysal, M. (2020), "Elevated temperature, freezing-thawing and wetting-drying effects on polypropylene fiber reinforced metakaolin based geopolymer composites", Constr. Build. Mater., 235, 117502. https://doi.org/10.1016/j.conbuildmat.2019.117502.
  12. Azimi, Z. and Toufigh, V. (2023), "Influence of blast furnace slag on pore structure and transport characteristics in low-calcium fly-ash-based geopolymer concrete", Sustainab., 15(18), 13348. https://doi.org/10.3390/su151813348.
  13. Bazant, Z.P., Kaplan, M.F. and Bazant, Z.P. (1996), Concrete at High Temperatures, Material Properties and Mathematical Models, Addison-Wesley, London, UK.
  14. Bengar, H.A. and Mousavi, M. (2020), "Performance of an innovative anchorage system for strengthening RC beams in adjacency of columns with FRP laminates", Struct., 28, 197-204. https://doi.org/10.1016/j.istruc.2020.08.075.
  15. Bengar, H.A., Hosseinpour, M. and Celikag, M. (2020), "Influence of CFRP confinement on bond behavior of steel deformed bar embedded in concrete exposed to high temperature", Struct., 24, 240-252. https://doi.org/10.1016/j.istruc.2020.01.017.
  16. Beyene, M.A., Munoz, J.F., Meininger, R.C. and Di Bella, C. (2017), "Effect of internal curing as mitigation to minimize alkali-silica reaction damage", ACI Mater. J., 114(3), 417-428. https://doi.org/10.14359/51689562.
  17. Byard, B.E., Schindler, A.K. and Barnes, R.W. (2014), "Cracking tendency of lightweight aggregate bridge deck concrete", ACI Mater. J., 111(2), 1025-1033. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000469.
  18. Carneiro, J.A., Lima, P.R.L., Leite, M.B. and Toledo Filho, R.D. (2014), "Compressive stress-strain behavior of steel fiber reinforced-recycled aggregate concrete", Cement Concrete Compos., 46, 65-72. https://doi.org/10.1016/j.cemconcomp.2013.11.006.
  19. Castro, J., Keiser, L., Golias, M. and Weiss, J. (2011), "Absorption and desorption properties of fine lightweight aggregate for application to internally cured concrete mixtures", Cement Concrete Compos., 33(10), 1001-1008. https://doi.org/10.1016/j.cemconcomp.2011.07.006.
  20. Cemalgil, S., Etli, S.and Onat, O. (2018), "Curing effect on mortar properties produced with styrene-butadiene rubber", Comput. Concrete, 21(6), 705-715. https://doi.org/10.12989/cac.2018.21.6.705.
  21. Chen, P., Wang, J., Wang, L. and Xu, Y. (2019), "Perforated cenospheres: A reactive internal curing agent for alkali activated slag mortars", Cement Concrete Compos., 104, 103351. https://doi.org/10.1016/j.cemconcomp.2019.103351.
  22. Deng, Z.C., Wang, J.W. and Ding, J.M. (2021), "The influence of containing supplementary cementitious materials on preparation and properties for UHPC", Comput. Concrete, 28(4), 405-413. https://doi.org/10.12989/cac.2021.28.4.405.
  23. Eidan, J., Rasoolan, I., Rezaeian, A. and Poorveis, D. (2019), "Residual mechanical properties of polypropylene fiber-reinforced concrete after heating", Constr. Build. Mater., 198, 195-206. https://doi.org/10.1016/j.conbuildmat.2018.11.209.
  24. El-Dieb, A. and El-Maaddawy, T. (2018), "Assessment of reinforcement corrosion protection of self-curing concrete", J. Build. Eng., 20, 72-80. https://doi.org/10.1016/j.jobe.2018.07.007.
  25. Fan, K., Li, D., Damrongwiriyanupap, N. and Li, L.Y. (2019), "Compressive stress-strain relationship for fly ash concrete under thermal steady state", Cement Concrete Compos., 104, 103371. https://doi.org/10.1016/j.cemconcomp.2019.103371.
  26. Giwa, I., Game, D., Ahmed, H., Noorvand, H., Arce, G., Hassan, M. and Kazemian, A. (2023), "Performance and macrostructural characterization of 3D printed steel fiber reinforced cementitious materials", Constr. Build. Mater., 369, 130593. https://doi.org/10.1016/j.conbuildmat.2023.130593.
  27. Golafshani, E.M., Behnood, A. and Arashpour, M. (2023), "Predicting the compressive strength of eco-friendly and normal concretes using hybridized fuzzy inference system and particle swarm optimization algorithm", Artif. Intell. Rev., 56(8), 7965-7984. https://doi.org/10.1007/s10462-022-10373-4.
  28. Gupta, S., Singh, D., Gupta, T. and Chaudhary, S. (2022), "Effect of limestone calcined clay cement (LC 3) on the fire safety of concrete structures", Comput. Concrete, 29(4), 263-278. https://doi.org/10.12989/cac.2022.29.4.263.
  29. Haido, J.H., Tayeh, B.A., Majeed, S.S. and Karpuzcu, M. (2021), "Effect of high temperature on the mechanical properties of basalt fibre self-compacting concrete as an overlay material", Constr. Build. Mater., 268, 121725. https://doi.org/10.1016/j.conbuildmat.2020.121725.
  30. Hamada, H., Alattar, A., Tayeh, B., Yahaya, F. and Almeshal, I. (2022), "Influence of different curing methods on the compressive strength of ultra-high-performance concrete, a comprehensive review", Case Stud. Constr. Mater., 17, e01390. https://doi.org/10.1016/j.cscm.2022.e01390.
  31. Kamal, M., Safan, M., Bashandy, A. and Khalil, A. (2018), "Experimental investigation on the behavior of normal strength and high strength self-curing self-compacting concrete", J. Build. Eng., 16, 79-93. https://doi.org/10.1016/j.jobe.2017.12.012.
  32. Kang, S.H., Hong, S.G. and Moon, J. (2018), "Shrinkage characteristics of heat-treated ultra-high performance concrete and its mitigation using superabsorbent polymer based internal curing method", Cement Concrete Compos., 89, 130-138. https://doi.org/10.1016/j.cemconcomp.2018.03.003.
  33. Kazmi, S.M.S., Munir, M.J., Wu, Y.F., Patnaikuni, I., Zhou, Y. and Xing, F. (2019), "Axial stress-strain behavior of macro-synthetic fiber reinforced recycled aggregate concrete", Cement Concrete Compos., 97, 341-356. https://doi.org/10.1016/j.cemconcomp.2019.01.005.
  34. Khaliq, W. and Mujeeb, A. (2019), "Effect of processed pozzolans on residual mechanical properties and macrostructure of high-strength concrete at elevated temperatures", Struct. Concrete, 20(1), 307-317. https://doi.org/10.1002/suco.201800074.
  35. Khaliq, W. and Waheed, F. (2017), "Mechanical response and spalling sensitivity of air entrained high-strength concrete at elevated temperatures", Constr. Build. Mater., 150, 747-757. https://doi.org/10.1016/j.conbuildmat.2017.06.039.
  36. Khan, M., Shariq, M., Akhtar, S. and Masood, A. (2020), "Performance of high-Volume fly ash concrete after exposure to elevated temperature", J. Australian Ceram. Soc., 56(2), 781-794. https://doi.org/10.1007/s41779-019-00396-6.
  37. Kim, J.H., Choi, S.W., Lee, K.M. and Choi, Y.C. (2018), "Influence of internal curing on the pore size distribution of high strength concrete", Constr. Build. Mater., 192, 50-57. https://doi.org/10.1016/j.conbuildmat.2018.10.130.
  38. Kodur, V. and Sultan, M. (2003), "Effect of temperature on thermal properties of high-strength concrete", J. Mater. Civil Eng., 15(2), 101-107. https://doi.org/10.1061/(ASCE)0899-1561(2003)15,2(101)
  39. Lam, T.Q.K. and Doa, T.M.D. (2023), "Experiment and simulation analysis on full scale double-layer concrete shell", Comput. Concrete, 31(1), 9-21. https://doi.org/10.12989/.2023.31.1.009.
  40. Lee, K.H., Yang, K.H., Mun, J.H. and Kwon, S.J. (2019), "Mechanical properties of concrete made from different expanded lightweight aggregates", ACI Mater. J., 116(2), 9-20. https://doi.org/10.14359/51712265.
  41. Lee, N., Koh, K., Park, S. and Ryu, G. (2017), "Microstructural investigation of calcium aluminate cement-based ultra-high performance concrete (UHPC) exposed to high temperatures", Cement Concrete Res., 102, 109-118. https://doi.org/10.1016/j.cemconres.2017.09.004.
  42. Li, Y., Pimienta, P., Pinoteau, N. and Tan, K.H. (2019), "Effect of aggregate size and inclusion of polypropylene and steel fibers on explosive spalling and pore pressure in ultra-high-performance concrete (UHPC) at elevated temperature", Cement Concrete Compos., 99, 62-71. https://doi.org/10.1016/j.cemconcomp.2019.02.016.
  43. Li, Y., Tan, K.H. and Yang, E.H. (2019), "Synergistic effects of hybrid polypropylene and steel fibers on explosive spalling prevention of ultra-high performance concrete at elevated temperature", Cement Concrete Compos., 96, 174-181. https://doi.org/10.1016/j.cemconcomp.2018.11.009.
  44. Li, Y., Wang, H., Shi, C., Zou, D., Zhou, A. and Liu, T. (2023), "Effect of post-fire lime-saturated water and water-CO2 cyclic curing on strength recovery of thermally damaged high-performance concrete with different silica contents", Cement Concrete Res., 164, 107050. https://doi.org/10.1016/j.cemconres.2022.107050.
  45. Li, Z., Liu, J., Xiao, J. and Zhong, P. (2020), "Internal curing effect of saturated recycled fine aggregates in early-age mortar", Cement Concrete Compos., 108, 103444. https://doi.org/10.1016/j.cemconcomp.2019.103444.
  46. Liang, J., Wang, L., Ling, Z., Li, W. and Yang, W. (2022), "Compressive stress-strain behavior of RFAC after high temperature", Comput. Concrete, 30(1), 9-17. https://doi.org/10.12989/cac.2022.30.1.009.
  47. Liang, X., Wu, C., Su, Y., Chen, Z. and Li, Z. (2018), "Development of ultra-high performance concrete with high fire resistance", Constr. Build. Mater., 179, 400-412. https://doi.org/10.1016/j.conbuildmat.2018.05.241.
  48. Liao, W.C., Chern, J.C., Huang, H.C., Liu, T.K. and Chin, W.Y. (2021), "Establishment of analysis system and fast-access cloud-based database of concrete deformation", Comput. Concrete, 28(5), 441-450. https://doi.org/10.12989/cac.2021.28.5.441.
  49. Liu, J.C., Tan, K.H. and Yao, Y. (2018), "A new perspective on nature of fire-induced spalling in concrete", Constr. Build. Mater., 184, 581-590. https://doi.org/10.1016/j.conbuildmat.2018.06.204.
  50. Liu, Z., Chen, W., Zhang, W., Zhang, Y. and Lv, H. (2017), "Complete stress-strain behavior of ecological ultra-high-performance cementitious composite under uniaxial compression", ACI Mater. J., 114(5), 783. https://doi.org/10.14359/51689899.
  51. Lo, T.Y., Tang, W. and Cui, H. (2007), "The effects of aggregate properties on lightweight concrete", Build. Environ., 42(8), 3025-3029. https://doi.org/10.1016/j.buildenv.2005.06.031.
  52. Madduru, S.R.C., Shaik, K.S., Velivela, R. and Karri, V.K. (2020), "Hydrophilic and hydrophobic chemicals as self curing agents in self compacting concrete", J. Build. Eng., 28, 101008. https://doi.org/10.1016/j.jobe.2019.101008.
  53. Mansouri, E., Manfredi, M. and Hu, J.W. (2022), "Environmentally friendly concrete compressive strength prediction using hybrid machine learning", Sustainab., 14(20), 12990. https://doi.org/10.3390/su142012990.
  54. Mansouri, I., Ostovari, M., Awoyera, P.O. and Hu, J.W. (2021), "Predictive modeling of the compressive strength of bacteria-incorporated geopolymer concrete using a gene expression programming approach", Comput. Concrete, 27(4), 319-332. https://doi.org/10.12989/cac.2021.27.4.319.
  55. Mardani-Aghabaglou, A., Yogurtcu, E. and Andic-Cakir, O. (2015), "Water transport of lightweight concrete with different aggregate saturation levels", ACI Mater. J., 112(5), https://doi.org/10.14359/51687768.
  56. Maryoto, A., Lie, H.A. and Jonkers, H.M. (2021), "Flexural strength of concrete-galvalume composite beam under elevated temperatures", Comput. Concrete, 27(1), 13-20. https://doi.org/10.12989/cac.2021.27.1.013.
  57. Meng, W., Samaranayake, V. and Khayat, K.H. (2018), "Factorial design and optimization of ultra-high-performance concrete with lightweight sand", ACI Mater. J., 115(1), https://doi.org/10.14359/51700995.
  58. Miladirad, K., Golafshani, E.M., Safehian, M. and Sarkar, A. (2021), "Modeling the mechanical properties of rubberized concrete using machine learning methods", Comput. Concrete, 28(6), 567-583. https://doi.org/10.12989/cac.2021.28.6.567.
  59. Missemer, L., Ouedraogo, E., Malecot, Y., Clergue, C. and Rogat, D. (2019), "Fire spalling of ultra-high performance concrete, From a global analysis to microstructure investigations", Cement Concrete Res., 115, 207-219. https://doi.org/10.1016/j.cemconres.2018.10.005.
  60. Murad, Y.Z. and Abdel-Jabar, H. (2022), "Flexural behavior of RC beams made with basalt and polypropylene fibers: Experimental and numerical study", Comput. Concrete, 30(3), 165-173. https://doi.org/10.12989/cac.2022.30.3.165.
  61. Murphy, M.C., Beatty, D.N. and Srubar, W.V. (2023), "Structure and properties of portland-limestone cements synthesized with biologically architected calcium carbonate", International Conference on Bio-Based Building Materials, Vienna, Austria. June.
  62. Nematzadeh, M., Nazari, A. and Tayebi, M. (2022), "Post-fire impact behavior and durability of steel fiber-reinforced concrete containing blended cement-zeolite and recycled nylon granules as partial aggregate replacement", Arch. Civil Mech. Eng., 22(1), 1-25. https://doi.org/10.1007/s43452-021-00324-1.
  63. Nghia Nguyen, T., Le, T.C., Khatir, S. and Abdel Wahab, M. (2021), "A novel approach to the complete stress strain curve for plastically damaged concrete under monotonic and cyclic loads", Comput. Concrete, 28(1), 39-53. https://doi.org/10.12989/cac.2021.28.1.039.
  64. Noushini, A., Aslani, F., Castel, A., Gilbert, R.I., Uy, B. and Foster, S. (2016), "Compressive stress-strain model for low-calcium fly ash-based geopolymer and heat-cured Portland cement concrete", Cement Concrete Compos., 73, 136-146. https://doi.org/10.1016/j.cemconcomp.2016.07.004.
  65. Park, J.J., Yoo, D.Y., Kim, S. and Kim, S.W. (2019), "Benefits of synthetic fibers on the residual mechanical performance of UHPFRC after exposure to ISO standard fire", Cement Concrete Compos., 104, 103401. https://doi.org/10.1016/j.cemconcomp.2019.103401.
  66. Peng, J.L., Du, T., Zhao, T.S., Song, X.Q. and Tang, J.J. (2019), "Stress-strain relationship model of recycled concrete based on strength and replacement rate of recycled coarse aggregate", J. Mater. Civil Eng., 31(9), 04019189. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002847.
  67. Pliya, P., Cree, D., Hajiloo, H., Beaucour, A.L., Green, M. and Noumowe, A. (2019), "High-strength concrete containing recycled coarse aggregate subjected to elevated temperatures", Fire Technol., 55(5), 1477-1494. https://doi.org/10.1007/s10694-019-00820-0.
  68. Popovics, S. (1973), "A numerical approach to the complete stress-strain curve of concrete", Cement Concrete Res., 3(5), 583-599. https://doi.org/10.1016/0008-8846(73)90096-3.
  69. Rahmawati, A., Nurhidayati, A. and Prakoso, M. (2019), "The flexural strength of post-fire concrete with the use of waste banner fibers", IOP Conf. Ser.: Mater. Sci. Eng., 578, 012076. https://doi.org/10.1088/1757-899X/578/1/012076.
  70. Rios, J.D., Cifuentes, H., Leiva, C., Garcia, C. and Alba, M.D. (2018), "Behavior of high-strength polypropylene fiber-reinforced self-compacting concrete exposed to high temperatures", J. Mater. Civil Eng., 30(11), 04018271. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002491.
  71. Shemirani, A.B. (2022), "Experimental and numerical studies of concrete bridge decks using ultra high-performance concrete and reinforced concrete", Comput. Concrete, 29(6), 407-418. https://doi.org/10.12989/cac.2022.29.6.407.
  72. Tahmouresi, B., Koushkbaghi, M., Monazami, M., Abbasi, M.T. and Nemati, P. (2019), "Experimental and statistical analysis of hybrid-fiber-reinforced recycled aggregate concrete", Comput. Concrete, 24(3), 193-206. https://doi.org/10.12989/cac.2019.24.3.193.
  73. Tayebi, M. and Nematzadeh, M. (2021), "Effect of hot-compacted waste nylon fine aggregate on compressive stress-strain behavior of steel fiber-reinforced concrete after exposure to fire, Experiments and optimization", Constr. Build. Mater., 284, 122742. https://doi.org/10.1016/j.conbuildmat.2021.122742.
  74. Tayebi, M. and Nematzadeh, M. (2021), "Post-fire flexural performance and microstructure of steel fiber-reinforced concrete with recycled nylon granules and zeolite substitution", Struct., 33, 2301-2316. https://doi.org/10.1016/j.istruc.2021.05.080.
  75. Tayeh, B., Hadzima-Nyarko, M., Riad, M.Y.R. and Hafez, R.D.A. (2023), "Behavior of ultra-high-performance concrete with hybrid synthetic fiber waste exposed to elevated temperatures", Build., 13(1), 129. https://doi.org/10.3390/buildings13010129.
  76. Tobbala, D., Rashed, A., Tayeh, B.A. and Ahmed, T.I. (2022), "Performance and microstructure analysis of high-strength concrete incorporated with nanoparticles subjected to high temperatures and actual fires", Arch. Civil Mech. Eng., 22(2), 85. https://doi.org/10.1007/s43452-022-00397-6.
  77. Topcu, I.B., Unverdi, A. and Yildirim, V. (2022), "Statistical analysis of the influences of admixtures and elevated temperatures on mortar properties", Comput. Concrete, 29(3), 169-186. https://doi.org/10.12989/cac.2022.29.3.169.
  78. Trtik, P., Munch, B., Weiss, W.J., Kaestner, A., Jerjen, I., Josic, L., Lehmann, E. and Lura, P. (2011), "Release of internal curing water from lightweight aggregates in cement paste investigated by neutron and X-ray tomography", Nuclear Instrum. Method. Phys. Res., 651(1), 244-249. https://doi.org/10.1016/j.nima.2011.02.012.
  79. Tung, T.M., Le, D.H. and Babalola, O.E. (2023), "Prediction of residual compressive strength of fly ash based concrete exposed to high temperature using GEP", Comput. Concrete, 31(2), 111-121. https://doi.org/10.12989/cac.2023.31.2.111.
  80. Waheed, F., Khaliq, W. and Khushnood, R.A. (2018), "High-temperature residual strength and microstructure in air-entrained high-strength concrete", ACI Mater. J., 115(3), 425-435. https://doi.org/10.14359/51702037.
  81. Way, R. and Wille, K. (2016), "Effect of heat-induced chemical degradation on the residual mechanical properties of ultrahigh-performance fiber-reinforced concrete", J. Mater. Civil Eng., 28(4), 04015164. https://doi.org/10.1061/(ASCE)MT.1943-5533.00014.
  82. Xiao, J. and Falkner, H. (2006), "On residual strength of high-performance concrete with and without polypropylene fibres at elevated temperatures", Fire Saf. J., 41(2), 115-121. https://doi.org/10.1016/j.firesaf.2005.11.004.
  83. Xu, Z., Li, J. and Wu, C. (2023), "A numerical study of blast resistance of fire damaged ultra-high performance concrete columns", Eng. Struct., 279, 115613. https://doi.org/10.1016/j.engstruct.2023.115613.
  84. Yang, H., Zhao, H. and Liu, F. (2019), "Compressive stress-strain relationship of concrete containing coarse recycled concrete aggregate at elevated temperatures", J. Mater. Civil Eng., 31(9), 04019194. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002851.
  85. Yazdanpanah, O., Dolatshahi, K.M. and Moammer, O. (2021), "Earthquake-induced economic loss estimation of eccentrically braced frames through roof acceleration-based nonmodel approach", J. Constr. Steel Res., 187, 106888. https://doi.org/10.1016/j.jcsr.2021.106888.
  86. Yin, G.J., Zuo, X.B., Wen, X.D. and Tang, Y.J. (2021), "Experimental study and modeling on stress-strain curve of sulfate-corroded concrete", Comput. Concrete, 28(1), 1-12. https://doi.org/10.12989/cac.2021.28.1.001.
  87. Yu, K., Yu, J., Lu, Z. and Chen, Q. (2016), "Fracture properties of high-strength/high-performance concrete (HSC/HPC) exposed to high temperature", Mater. Struct., 49(11), 4517-4532. https://doi.org/10.1617/s11527-016-0804-x.
  88. Zafar, M.S., Bakhshi, A. and Hojati, M. (2023), "Printability and shape fidelity evaluation of self-reinforced engineered cementitious composites", Constr. Build. Mater., 408, 133676. https://doi.org/10.1016/j.conbuildmat.2023.133676.
  89. Zeng, J.J., Ye, Y.Y., Gao, W.Y., Smith, S.T. and Guo, Y.C. (2020), "Stress-strain behavior of polyethylene terephthalate fiber-reinforced polymer-confined normal-, high-and ultra high-strength concrete", J. Build. Eng., 30, 101243. https://doi.org/10.1016/j.jobe.2020.101243.
  90. Zhang, D., Dasari, A. and Tan, K.H. (2018), "On the mechanism of prevention of explosive spalling in ultra-high performance concrete with polymer fibers", Cement Concrete Res., 113, 169-177. https://doi.org/10.1016/j.cemconres.2018.08.012.
  91. Zhang, Q., Feng, Y., Cheng, Z., Jiao, Y., Cheng, H., Wang, J. and Qi, J. (2022), "Large-scale testing and numerical study on an innovative dovetail UHPC joint subjected to negative moment", Comput. Concrete, 30(3), 175-183. https://doi.org/10.12989/cac.2022.30.3.175.
  92. Zhang, X., Zhang, S., Chen, X., Gao, X. and Zhou, C. (2022), "The combined reinforcement to recycled aggregate concrete by circular steel tube and basalt fiber", Comput. Concrete, 29(5), 323-334. https://doi.org/10.12989/cac.2022.29.5.323.
  93. Zhong, P., Wyrzykowski, M., Toropovs, N., Li, L., Liu, J. and Lura, P. (2019), "Internal curing with superabsorbent polymers of different chemical structures", Cement Concrete Res., 123, 105789. https://doi.org/10.1016/j.cemconres.2019.105789.
  94. Zhu, H., Yu, H., Ma, H. and Yang, S. (2020), "Uniaxial compressive stress-strain curves of magnesium oxysulfate cement concrete", Constr. Build. Mater., 232, 117244. https://doi.org/10.1016/j.conbuildmat.2019.117244.