DOI QR코드

DOI QR Code

Effect of a Low-Intensity Combined Exercise Program using Props on the Daily Living Fitness and Quality of Life of Elderly Women

저강도 복합운동프로그램이 여성노인의 일상생활체력과 낙상효능감에 미치는 영향

  • Hong-Gyun Lee (Department of Physical Therapy, Dongshin University) ;
  • Eun-Jeong Kim (Department of Physical Therapy, Dongshin University)
  • 이홍균 (동신대학교 물리치료학과) ;
  • 김은정 (동신대학교 물리치료학과)
  • Received : 2023.12.26
  • Accepted : 2024.01.12
  • Published : 2024.02.28

Abstract

PURPOSE: The purpose of this study was to examine the effectiveness of a low-intensity combined exercise program on daily physical fitness parameters such as balance, flexibility, muscle strength, and fear of falling of elderly women in the community. METHODS: This study assigned 30 elderly women randomly into two groups: The control and experimental groups. The control group (n = 15) underwent routine gait. The experimental group (n = 15) underwent the low-intensity combined exercise. The exercise program in this study comprising combined exercise, including balance, flexibility, muscle strength training, and the exercise program using props was conducted twice a week for 8 weeks. RESULTS: The average age of the control and experimental groups was 77.27 years and 78.33 years, respectively. There were significant differences in static balance (t = -4.167, p < .001), dynamic balance (t = 2.463, p < .001), (t = -3.870, p < .001), (t = -2.262, p < .001), (t = -5.732, p < .001), (t = -6.573, p < .001), and fear of falling (t = -5.129, p < .001). CONCLUSION: The results show that low-intensity combined exercise is an effective intervention that improves physical health fear of falling in older women. The combined exercise program was found to be more effective in terms of physical function and fall-related psychological function compared to the control group that only walked.

Keywords

References

  1. Statistics Korea. 2022 life table. 2023.
  2. Fried LP, Xue QL, Cappola AR, et al. Nonlinear multisystem physiological dysregulation associated with frailty in older women: implications for etiology and treatment. J Gerontol A Biol Sci Med Sci. 2009;64:1049-57. https://doi.org/10.1093/gerona/glp076
  3. Morley JE, Vellas B, van Kan GA, et al. Frailty consensus: a call to action. J Am Med Dir Assoc. 2013;14:392-97. https://doi.org/10.1016/j.jamda.2013.03.022
  4. Fried LP, Ferrucci L, Darer J, et al. Untangling the concepts of disability, frailty, and comorbidity: implications for improved targeting and care. J Gerontol A Biol Sci Med Sci. 2004;59:255-63. https://doi.org/10.1093/gerona/59.3.M255
  5. Ziaaldini MM, Marzetti E, Picca A, et al. Biochemical pathways of sarcopenia and their modulation by physical exercise: A narrative review. Front Med(Lausanne). 2017;4:167.
  6. Rosic S, Rosic M, Samardzic R, et al. Receptive functions at childbearing age, perimenopause and postmenopause. Mater Sociomed. 2014;26(1):49-50. https://doi.org/10.5455/msm.2014.26.49-50
  7. Vandervoort AA. Aging of the human neuromuscular system. Muscle Nerve. 2002;25(1):17-25. https://doi.org/10.1002/mus.1215
  8. Rodrigues F, Domingos C, Monteiro D, et al. A review on aging, sarcopenia, falls, and resistance training in community-dwelling older adults. Int J Environ Res Public Health. 2022;13;19(2):874.
  9. Chang KV, Hsu TH, Wu WT, et al. Is sarcopenia associated with depression? A systematic review and meta-analysis of observational studies. Age Ageing. 2017;46(5):738-46. https://doi.org/10.1093/ageing/afx094
  10. Tsekoura M, Kastrinis A, Katsoulaki M, et al. Sarcopenia and its impact on quality of life. Adv Exp Med Biol. 2017;987:213-18. https://doi.org/10.1007/978-3-319-57379-3_19
  11. Bliuc D, Nguyen ND, Milch VE, et al. Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA. 2009;301:513-21. https://doi.org/10.1001/jama.2009.50
  12. Fortaleza ACS, Rossi FE, Buonani C, et al. Total body and trunk fat mass and the gait performance in postmenopausal women. Rev Bras Ginecol Obstet. 2014;36(04):176-81. https://doi.org/10.1590/S0100-7203201400040003
  13. Barbe MF, Barr AE. Inflammation and the pathophysiology of work-related musculoskeletal disorders. Brain Behav Immun. 2006;20(5):423-9.
  14. Garrard JW, Cox NJ, Dodds RM, et al. Comprehensive geriatric assessment in primary care: a systematic review. Aging Clin Exp Res. 2020;32:197-205. https://doi.org/10.1007/s40520-019-01183-w
  15. PilottoA CA, PilottoA DJ, VeroneseN MC, et al. Three decades of comprehensive geriatric assessment: evidence coming from different healthcare settings and specific clinical conditions. J Am Med Dir Assoc. 2017;18:192.1-192. https://doi.org/10.1016/j.jamda.2016.11.001
  16. Pacifico J, Geerlings MAJ, Reijnierse EM, et al. Prevalence of sarcopenia as a comorbid disease: a systematic review and meta-analysis. Exp Gerontol. 2020;131:110801.
  17. Pernambuco CS, Rodrigues BM, Bezerra JCP, et al. Quality of life, elderly and physical activity. Health. 2012;4(2):88-93. https://doi.org/10.4236/health.2012.42014
  18. Bae S, Lee S, Park H, et al. Position statement: Exercise guidelines for osteoporosis management and fall prevention in osteoporosis patients. J Bone Metab. 2023;30(2):149-65. https://doi.org/10.11005/jbm.2023.30.2.149
  19. Costa JNA, Ribeiro ALA, Ribeiro DBG, et al. Balance exercise circuit for fall prevention in older adults: a randomized controlled crossover trial. J Frailty Sarcopenia Falls. 2022,1;7(2):60-71. https://doi.org/10.22540/JFSF-07-060
  20. Sa-Caputo DC, Moreira-Marconi E, Costa-Cavalcanti RG, et al. Alterations on the plasma concentration of hormonal and nonhormonal biomarkers in human beings submitted to whole body vibration exercises. SRE. 2015;10(8):287-97.
  21. Cardinale M, Wakeling J. Whole body vibration exercise: are vibrations good for you? Br J Sports Med. 2005;39(9):585-9. https://doi.org/10.1136/bjsm.2005.016857
  22. Milanovic Z, Pantelic S, Trajkovic N, et al. Age-related decrease in physical activity and functional fitness among elderly men and women. Clin Intrv Aging. 2013;8:549-56. https://doi.org/10.2147/CIA.S44112
  23. Meng F, Shu D, Chen F, et al. Effects of combined aerobic and resistance exercise on body composition and physical function in older adults: a systematic review. Research square. 2022. https://doi.org/10.21203/rs.3.rs-2400052/v1.
  24. Yang KS, Song JH, Lee SG, et al. Effects of low-intensity complex exercise program for 8 Weeks on forced vital capacity in elderly women. Kor Acad Cardio Phys Ther. 2016;4(1):15-19.
  25. Kim EJ, Lee HJ, Lee SH. The effects of fall-prevention exercise program on lower extremity muscle strength, balance ability and fall efficacy in elderly homes at elderly day care center. Journal of muscle and joint health. 2021;28(2):102-10. https://doi.org/10.5953/JMJH.2021.28.2.102
  26. Vereeck L, Wuyts F, Truijen S, et al. Clinical assessment of balance: normative data, and gender and age effects. Int J Audiol. 2008;47(2):67-75. https://doi.org/10.1080/14992020701689688
  27. Chan PP, Tou JIS, Mimi MT, et al. Reliability and validity of the timed up and go test with a motor task in people with chronic stroke. Arch Phys Med Rehabil. 2017;98(11):2213-20. https://doi.org/10.1016/j.apmr.2017.03.008
  28. Johnson VL, Hunter DJ. The epidemiology of osteoarthritis. Best Pract Res Clin Rheumatol. 2014;28(1):5-15. https://doi.org/10.1016/j.berh.2014.01.004
  29. Kim HS, Tanaka K. The assessment of functional age using "activities of daily living" performance tests: A study of Korean women. J Aging Phys Act. 1995;3(1):39-53. https://doi.org/10.1123/japa.3.1.39
  30. Lim JH, Lee JH. The relationship between body composition change and muscle strength and endurance depending on aging at the senescence. J Korean Gerontol Soc. 2001;21(2):15-24.
  31. Tinetti ME, Richman D, Powell L. Falls efficacy as a measure of fear of falling. J Gerontol. 1990;45(6):239-43. https://doi.org/10.1093/geronj/45.6.P239
  32. Kempen GI, Yardley L, van Haastregt JC, et al. The Short FES-I: a shortened version of the falls efficacy scale-international to assess fear of falling. Age Ageing. 2008;37(1):45-50. https://doi.org/10.1093/ageing/afm157
  33. Bao W., Sun Y., Zhang T, et al. Exercise programs for muscle mass, muscle strength and physical performance in older adults with sarcopenia: A systematic review and meta-analysis. Aging Dis. 2020;11:863-73. https://doi.org/10.14336/AD.2019.1012
  34. Cruz-Jentoft AJ, Sayer AA. Sarcopenia. Lancet. 2019; 393:2636-46. https://doi.org/10.1016/S0140-6736(19)31138-9
  35. Cruz-Jentoft AJ, Landi F, Schneider SM, et al. Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing. 2014;43(6):748-59. https://doi.org/10.1093/ageing/afu115
  36. Poon LW, Gueldner SH, Sprouse BM. Successful aging and adaptation with chronic diseases. Springer Publishing Company. 2003.
  37. Statistics Department of the ministry of health and welfare 106 status survey of the elderly. (accessed on 21 August 2021);2021 Available online: https://dep.mohw.gov.tw/DOS/lp-5095-113.html.
  38. DiPietro L, Buchner DM, Marquez DX, et al. New scientific basis for the 2018 U.S. physical activity guidelines. J Sport Health Sci. 2019;8:197-200. https://doi.org/10.1016/j.jshs.2019.03.007
  39. Ekelund U, Tarp J, Steene-Johannessen J, et al. Dose-response associations between accelerometry measured physical activity and sedentary time and all cause mortality: Systematic review and harmonised meta-analysis. BMJ. 2019;366:l4570.
  40. Kraus WE, Powell KE, Haskell WL, et al. 2018 Physical activity guidelines advisory committee. Physical activity, All-cause and cardiovascular mortality, and cardiovascular Disease. Med Sci Sports Exerc. 2019;51:1270-81. https://doi.org/10.1249/MSS.0000000000001939
  41. Nagarkar A, Kulkarni, S. Association between daily activities and fall in older adults: an analysis of longitudinal ageing study in India (2017-18), BMC Geriatrics. 2022;22(1):203.
  42. Antonio GH, Robinson RV Mikel LS, et al. Safety and effectiveness of long-term exercise interventions in older adults: A systematic review and meta-analysis of randomized controlled trials. Sports Med. 2020;50:1095-106. https://doi.org/10.1007/s40279-020-01259-y
  43. Takayama K, Kita T, Nakamura H, et al. New predictive index for lumbar paraspinal muscle degeneration associated with aging. Spine. 2016;41(2):84-90. https://doi.org/10.1097/BRS.0000000000001154
  44. Sherrington C, Michaleff ZA, Fairhall N, et al. Exercise to prevent falls in older adults: an updated systematic review and meta-analysis. Br J Sports Med. 2017;51(24):1750-8. https://doi.org/10.1136/bjsports-2016-096547
  45. Gawler S, Skelton DA, Dinan-Young S, et al. Reducing falls among older people in general practice: The ProAct65+exercise intervention trial. Arch Gerontol Geriatr. 2016;67:46-54. https://doi.org/10.1016/j.archger.2016.06.019
  46. Park JH, Kim YM. Effect of exercise with vertical vibration on the balance, walking speed, muscle strength and falls efficacy in the elderly. J Korean Soc Phys Med. 2020;15(4):131-43. https://doi.org/10.13066/kspm.2020.15.4.131
  47. Choi JH, Park HY, Sun Y, et al. Effect of exercise intervention using mobile healthcare on blood lipid level and health-related physical fitness in obese women: a randomized controlled trial. Phys Act Nutr. 2023;27(3):64-70. https://doi.org/10.20463/pan.2023.0030
  48. Kim BY. The effects of walking exercise during 12 weeks on the cardiorespiratory function and physical fitness in elderly women. Journal of Sport and Leisure Studies. 2008;33(2), 851-862. https://doi.org/10.51979/KSSLS.2008.08.33.851
  49. Papadopoulou SK. Sarcopenia: a contemporary health problem among older adult populations. Nutrients. 2020;12(5):1293.
  50. Lee TS, Sim NJ, Lee HS. Effects of low-intensity combined exercise training on body composition, metabolic risk factors and cognition function in old-elderly obese women. J Sport Leis Stud. 2018;71:551-6.  https://doi.org/10.51979/KSSLS.2018.02.71.551