DOI QR코드

DOI QR Code

ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO STOCHASTIC 3D GLOBALLY MODIFIED NAVIER-STOKES EQUATIONS WITH UNBOUNDED DELAYS

  • Cung The Anh (Department of Mathematics Hanoi National University of Education) ;
  • Vu Manh Toi (Faculty of Computer Science and Engineering Thuyloi University) ;
  • Phan Thi Tuyet (Department of Mathematics Electric Power University)
  • Received : 2022.07.27
  • Accepted : 2023.12.28
  • Published : 2024.03.01

Abstract

This paper studies the existence of weak solutions and the stability of stationary solutions to stochastic 3D globally modified Navier-Stokes equations with unbounded delays in the phase space BCL-∞(H). We first prove the existence and uniqueness of weak solutions by using the classical technique of Galerkin approximations. Then we study stability properties of stationary solutions by using several approach methods. In the case of proportional delays, some sufficient conditions ensuring the polynomial stability in both mean square and almost sure senses will be provided.

Keywords

Acknowledgement

This work is financially supported by the Vietnam Ministry of Education and Training under grant number B2023-SPH-13.

References

  1. C. T. Anh, N. V. Thanh, and P. T. Tuyet, Asymptotic behaviour of solutions to stochastic three-dimensional globally modified Navier-Stokes equations, Stochastics 95 (2023), no. 6, 997-1021. https://doi.org/10.1080/17442508.2022.2147005
  2. J. A. D. Appleby and E. Buckwar, Sufficient conditions for polynomial asymptotic behaviour of the stochastic pantograph equation, in Proceedings of the 10'th Colloquium on the Qualitative Theory of Differential Equations, 2, 32 pp, Electron. J. Qual. Theory Differ. Equ., Szeged, 2016. https://doi.org/10.14232/ejqtde.2016.8.2
  3. T. Caraballo and P. E. Kloeden, The three-dimensional globally modified Navier-Stokes equations: recent developments, in Recent trends in dynamical systems, 473-492, Springer Proc. Math. Stat., 35, Springer, Basel, 2013. https://doi.org/10.1007/978-3-0348-0451-6_18
  4. T. Caraballo, P. E. Kloeden, and J. Real, Invariant measures and statistical solutions of the globally modified Navier-Stokes equations, Discrete Contin. Dyn. Syst. Ser. B 10 (2008), no. 4, 761-781. https://doi.org/10.3934/dcdsb.2008.10.761
  5. T. Caraballo, J. Real, and P. E. Kloeden, Unique strong solutions and V -attractors of a three dimensional system of globally modified Navier-Stokes equations, Adv. Nonlinear Stud. 6 (2006), no. 3, 411-436. https://doi.org/10.1515/ans-2006-0304
  6. G. Deugou'e and J. K. Djoko, On the time discretization for the globally modified three dimensional Navier-Stokes equations, J. Comput. Appl. Math. 235 (2011), no. 8, 2015-2029. https://doi.org/10.1016/j.cam.2010.10.003
  7. G. Deugou'e and T. Tachim Medjo, The stochastic 3D globally modified Navier-Stokes equations: existence, uniqueness and asymptotic behavior, Commun. Pure Appl. Anal. 17 (2018), no. 6, 2593-2621. https://doi.org/10.3934/cpaa.2018123
  8. B. Q. Dong and J. Song, Global regularity and asymptotic behavior of modified Navier-Stokes equations with fractional dissipation, Discrete Contin. Dyn. Syst. 32 (2012), no. 1, 57-79. https://doi.org/10.3934/dcds.2012.32.57
  9. J. Duan and W. Wang, Effective Dynamics of Stochastic Partial Differential Equations, Elsevier Insights, Elsevier, Amsterdam, 2014.
  10. P. E. Kloeden, J. A. Langa, and J. Real, Pullback V -attractors of the 3-dimensional globally modified Navier-Stokes equations, Commun. Pure Appl. Anal. 6 (2007), no. 4, 937-955. https://doi.org/10.3934/cpaa.2007.6.937
  11. P. E. Kloeden, P. Mar'in-Rubio, and J. Real, Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations, Commun. Pure Appl. Anal. 8 (2009), no. 3, 785-802. https://doi.org/10.3934/cpaa.2009.8.785
  12. L. F. Liu and T. Caraballo, Analysis of a stochastic 2D-Navier-Stokes model with infinite delay, J. Dynam. Differential Equations 31 (2019), no. 4, 2249-2274. https://doi.org/10.1007/s10884-018-9703-x
  13. L. F. Liu, T. Caraballo, and P. Mar'in-Rubio, Stability results for 2D Navier-Stokes equations with unbounded delay, J. Differential Equations 265 (2018), no. 11, 5685-5708. https://doi.org/10.1016/j.jde.2018.07.008
  14. P. Mar'in-Rubio, A. M. M'arquez-Dur'an, and J. Real, Three dimensional system of globally modified Navier-Stokes equations with infinite delays, Discrete Contin. Dyn. Syst. Ser. B 14 (2010), no. 2, 655-673. https://doi.org/10.3934/dcdsb.2010.14.655
  15. P. Mar'in-Rubio, A. M. M'arquez-Dur'an, and J. Real, Pullback attractors for globally modified Navier-Stokes equations with infinite delays, Discrete Contin. Dyn. Syst. 31 (2011), no. 3, 779-796. https://doi.org/10.3934/dcds.2011.31.779
  16. P. Mar'in-Rubio, A. M. M'arquez-Dur'an, and J. Real, Asymptotic behavior of solutions for a three dimensional system of globally modified Navier-Stokes equations with a locally Lipschitz delay term, Nonlinear Anal. 79 (2013), 68-79. https://doi.org/10.1016/j.na.2012.11.006
  17. P. Mar'in-Rubio, J. Real, and A. M. M'arquez-Dur'an, On the convergence of solutions of globally modified Navier-Stokes equations with delays to solutions of Navier-Stokes equations with delays, Adv. Nonlinear Stud. 11 (2011), no. 4, 917-927. https://doi.org/10.1515/ans-2011-0409
  18. M. Romito, The uniqueness of weak solutions of the globally modified Navier-Stokes equations, Adv. Nonlinear Stud. 9 (2009), no. 2, 425-427. https://doi.org/10.1515/ans-2009-0209
  19. L. T. Thuy, Asymptotic behavior of solutions to 3D Kelvin-Voigt-Brinkman-Forchheimer equations with unbounded delays, Electron. J. Differential Equations 2022 (2022), Paper No. 7, 18 pp. https://doi.org/10.58997/ejde.2022.07
  20. V. M. Toi, Stability and stabilization for the three-dimensional Navier-Stokes-Voigt equations with unbounded variable delay, Evol. Equ. Control Theory 10 (2021), no. 4, 1007-1023. https://doi.org/10.3934/eect.2020099
  21. J. Wang, C. Zhao, and T. Caraballo, Invariant measures for the 3D globally modified Navier-Stokes equations with unbounded variable delays, Commun. Nonlinear Sci. Numer. Simul. 91 (2020), 105459, 14 pp. https://doi.org/10.1016/j.cnsns.2020.105459 
  22. F. Wei and K. Wang, The existence and uniqueness of the solution for stochastic functional differential equations with infinite delay, J. Math. Anal. Appl. 331 (2007), no. 1, 516-531. https://doi.org/10.1016/j.jmaa.2006.09.020
  23. F. Wu, G. Yin, and H. Mei, Stochastic functional differential equations with infinite delay: existence and uniqueness of solutions, solution maps, Markov properties, and ergodicity, J. Differential Equations 262 (2017), no. 3, 1226-1252. https://doi.org/10.1016/j.jde.2016.10.006
  24. C. Zhao and T. Caraballo, Asymptotic regularity of trajectory attractor and trajectory statistical solution for the 3D globally modified Navier-Stokes equations, J. Differential Equations 266 (2019), no. 11, 7205-7229. https://doi.org/10.1016/j.jde.2018.11.032
  25. C. Zhao and L. Yang, Pullback attractors and invariant measures for the non-autonomous globally modified Navier-Stokes equations, Commun. Math. Sci. 15 (2017), no. 6, 1565-1580. https://doi.org/10.4310/CMS.2017.v15.n6.a4