DOI QR코드

DOI QR Code

The Effect of Mo Addition on Oxygen Vacancies in the Oxide Scale of Ferritic Stainless Steel for SOFC Interconnects

  • 투고 : 2023.11.13
  • 심사 : 2023.11.28
  • 발행 : 2024.02.29

초록

The concentration and diffusion coefficient of oxide ion vacancies in the oxide scale formed on Fe-22Cr-0.5Mn ferritic stainless steel with and without molybdenum (Mo) was measured at 800℃ by the electrochemical polarization method. After pre-oxidation for 100 h in ambient air at 800 ℃, the oxide scale on one side was completely removed with sandpaper. A YSZ plate was placed on the side where the oxide scale remained. Platinum (Pt) meshes were attached on the top of the YSZ plate and the side where the oxide scale was removed. Changes in electrical current were measured after applying an electrical potential through Pt wires welded to the Pt meshes. The results were interpreted by solving the diffusion equation. The diffusion coefficient and concentration of oxide ion vacancy decreased by 30% and 70% in the specimen with Mo, respectively, compared to the specimen without Mo. The oxide ion vacancy concentration of chromia decreased due to the addition of Mo.

키워드

과제정보

This research was supported by grants from the Energy Technology Development Project (20203030030020) funded by the Ministry of Trade, Industry and Energy, Republic of Korea.

참고문헌

  1. S. H. Kim, J. Y. Huh, J. H. Jun, D. H. Kim and J. H. Jun, Evaluation of STS 430 and STS 444 for SOFC Interconnect Applications, Corrosion Science and Technology, 6, 1 (2007). https://www.j-cst.org/data/issue/CST/C000601/C00060100001.pdf 100001.pdf
  2. S. P. Jiang, J. P. Zhang, and K. Foger, Deposition of Chromium Species at Sr-Doped LaMnO3 Electrodes in Solid Oxide Fuel Cells. II. Effect on O2 Reduction Reaction, Journal of Electrochemical Society, 147, 3195 (2000). Doi: https://doi.org/10.1149/1.1393883
  3. Z. Yang, K. S. Weil, D. M. Paxton, and J. W. Stevenson, Selection and Evaluation of Heat-Resistant Alloys for SOFC Interconnect Applications, Journal of Electrochemical Society, 150, A1188 (2003). Doi: https://doi.org/10.1149/1.1595659
  4. H. Yokokawa, H. Tu, B. Iwanschitz, and A. Mai, Fundamental Mechanisms Limiting Solid Oxide Fuel Cell Durability, Journal of Power Sources, 182, 400 (2008). Doi: https://doi.org/10.1016/j.jpowsour.2008.02.016
  5. D. W. Yun, H. S. Seo, J. H. Jun, J. M. Lee, and K. Y. Kim, Molybdenum Effect on Oxidation Resistance and Electric Conduction of Ferritic Stainless Steel for SOFC Interconnect, International Journal of Hydrogen Energy, 37, 10328 (2012). Doi: https://doi.org/10.1016/j.ijhydene.2012.04.013
  6. D. W. Yun, H. S. Seo, J. H. Jun, and K. Y. Kim, Evaluation of Nb- or Mo-Alloyed Ferritic Stainless Steel as SOFC Interconnect by Using Button Cells, International Journal of Hydrogen Energy, 38, 1560 (2013). Doi: https://doi.org/10.1016/j.ijhydene.2012.11.028
  7. S. Kondo, Y. W. Chai, K. Kanai, D.S. Lee, M. Watanabe, S. Ishikawa, T. Yamasita, and Y. Kimura, Intermetallic Phase Precipitation and Oxidation Behavior of Fe-20Cr-0.5Nb-2Mo (at.%) High-Cr Ferritic Alloy at High Temperatures, Acta Materialia, 246, 118677 (2023). Doi: https://doi.org/10.1016/j.actamat.2023.118677
  8. B. Hua, J. Pu, F. Lu, J. Zhang, B. Chi, and L. Jian, Development of a Fe-Cr Alloy for Interconnect Application in Intermediate Temperature Solid Oxide Fuel Cells, Journal of Power Sources, 195, 2782 (2010). Doi: https://doi.org/10.1016/j.jpowsour.2009.08.077
  9. L. Garcia-Fresnillo, L. Niewolak, W. J. Quadakkers, and G. H. Meier, Influence of Alloying Elements on the Behavior of Different Ferritic Steels as Candidate Materials for SOFC Interconnect, Oxidation of Metals, 89, 61 (2018). Doi: https://doi.org/10.1007/s11085-017-9777-6
  10. H. S. Seo, D. W. Yun, and K. Y. Kim, Effect of Ti Addition on the Electric and Ionic Property of the Oxide Scale Formed on the Ferritic Stainless Steel for SOFC Interconnect, International Journal of Hydrogen Energy, 37, 16151 (2012). Doi: https://doi.org/10.1016/j.ijhydene.2012.08.073
  11. H. S. Seo, D. W. Yun, and K. Y. Kim, Oxidation Behavior of Ferritic Stainless Steel Containing Nb, Nb-Si and Nb-Ti for SOFC Interconnect, International Journal of Hydrogen Energy, 38, 2432 (2013). Doi: https://doi.org/10.1016/j.ijhydene.2012.12.073
  12. L. Niewolak, J. Zurek, E. Wessel, H. Hattendorf, and W.J. Quadakkers, Temperature Dependence of Phase Composition in W and Si-Alloyed High Chromium Ferritic Steels for SOFC Interconnect Applications, Journal of Alloys and Compounds, 717, 240 (2017). Doi: https://doi.org/10.1016/j.jallcom.2017.05.113
  13. B. Kuhn, C. Asensio Jimenez, L. Niewolak, T. Huttel, T. Beck, H. Hattendorf, L. Singheiser, and W.J. Quadakkers, Effect of Laves Phase Strengthening on the Mechanical Properties of High Cr Ferritic Steels for Solid Oxide Fuel Cell Interconnect Application, Materials Science and Engineering: A, 528, 5888 (2011). Doi: https://doi.org/10.1016/j.msea.2011.03.112
  14. T. Thublaor and S. Chandra-ambhorn, High Temperature Oxidation and Chromium Volatilisation of AISI 430 Stainless Steel Coated by Mn-Co and Mn-Co-Cu Oxides for SOFC Interconnect Application, Corrosion Science, 174, 108802 (2020). Doi: https://doi.org/10.1016/j.corsci.2020.108802
  15. F. Saeidpour and H. Ebrahimifar, Effect of Nanostructure Fe-Ni-Co Spinel Oxides/Y2O3 Coatings on the High-Temperature Oxidation Behavior of Crofer 22 APU Stainless Steel Interconnect, Corrosion Science, 182, 109280 (2021). Doi: https://doi.org/10.1016/j.corsci.2021.109280
  16. S. U. Oh, D. K. Kim, I. T. Lee, C. S. Choi, J. A. Lee, Y. W. Heo, and J. H. Lee, Electrophoretic Deposition and Low-Temperature Densification of Cu1.35Mn1.65O4 Spinel for an Interconnect Protective Coating in Solid Oxide Fuel Cells, International Journal of Hydrogen Energy, 47, 33410 (2022). Doi: https://doi.org/10.1016/j.ijhydene.2022.07.259
  17. Y. S. Kim, Synergistic Effect of Nitrogen and Molybdenum on Localized Corrosion of Stainless Steels, Corrosion Science and Technology, 9, 20 (2010). https://www.j-cst.org/opensource/pdfjs/web/pdf_viewer.htm?code=C00090100020 100020
  18. E. L. Roy, E. A. Cho, H. S. Kim, and H. S. Kwon, Effects of Mo on the Structure and Semiconducting Properties of Passive Film Formed on 18Cr-8Ni Stainless Steels, Corrosion Science and Technology, 1, 432 (2002). https://www.j-cst.org/opensource/pdfjs/web/pdf_viewer.htm?code=C00010600432 10600432
  19. K. Kanki, K. Nishihara, M. Sagara, and H. Amaya, Effect of Mo Addition on Passive Film of Martensitic Stainless Steels by Semiconductor Analysis in H2S-CO2 Environment, Corrosion, 79, 570 (2023). Doi: https://doi.org/10.5006/4190
  20. H. Liu, M. M. Stack, and S. B. Lyon, Reactive Element Effects on the Ionic Transport Processes in Cr2O3 Scales, Solid State Ionics, 109, 247 (1998). Doi: https://doi.org/10.1016/S0167-2738(98)00101-5
  21. A. C. S. Sabioni, R. P. B. Ramos, V. Ji, F. Jomard, W. A. de A. Macedo, P. L. Gastelois, and V. B. Trindade, About the Role of Chromium and Oxygen Ion Diffusion on the Growth Mechanism of Oxidation Films of the AISI 304 Austenitic Stainless Steel, Oxidation of Metals, 78, 211 (2012). Doi: https://doi.org/10.1007/s11085-012-9301-y
  22. A. C. S. Sabioni, R. P. B. Ramos, J. Vincent, and F. Jomard, Oxygen Diffusion Study in Oxidation Films of the AISI 304 Austenitic Stainless Steel, Defect and Diffusion Forum, 323-325, 345 (2012). Doi: https://doi.org/10.4028/www.scientific.net/DDF.323-325.345
  23. S. Chevalier, G. Strehl, J. Favergeon, F. Desserey, S. Weber, O. Heintz, G. Borchardt, and J. P. Larpin, Use of Oxygen Isotope to Study the Transport Mechanism during High Temperature Oxide Scale Growth, Materials at High Temperatures, 20, 253 (2003). Doi: https://doi.org/10.1179/mht.2003.029
  24. L. Marchetti, S. Perrin, O. Raquet, and M. Pijolat, Corrosion Mechanisms of Ni-Base Alloys in Pressurized Water Reactor Primary Conditions, Materials Science Forum, 595-598, 529 (2008). Doi: https://doi.org/10.4028/www.scientific.net/MSF.595-598.529
  25. I. Roy, P. K. Ray, and G. Balasubramanian, Diffusion of Multi-Principal Elements Through Stable Cr2O3 and Al2O3 Scales, Materialia, 24, 101497 (2022). Doi: https://doi.org/10.1016/j.mtla.2022.101497
  26. A. M. Dymshits, P. I. Dorogokupets, I. S. Sharygin, K. D. Litasov, A. Shatskiy, S. V. Rashchenko, E. Ohtani, A. Suzuki, and Y. Higo, Thermoelastic Properties of Chromium Oxide Cr2O3 (Eskolaite) at High Pressures and Temperatures, Physics and Chemistry of Minerals, 43, 447 (2016). Doi: https://doi.org/10.1007/s00269-016-0808-7