DOI QR코드

DOI QR Code

Surface Characteristics and Biocompatibility of MoS2-coated Dental Implant

MoS2 코팅된 치과용 임플란트의 표면특성과 생체적합성

  • Min-Ki Kwon (Department of Photonic Engineering, Chosun University) ;
  • Jun-Sik Lee (Department of Biological Science, Chosun University) ;
  • Mi Eun Kim (Department of Biological Science, Chosun University) ;
  • Han-Cheol Choe (College of Dentistry, Chosun University)
  • 권민기 (조선대학교 광기술공학과) ;
  • 이준식 (조선대학교 생명과학과) ;
  • 김미은 (조선대학교 생명과학과) ;
  • 최한철 (조선대학교 치과대학)
  • Received : 2024.02.09
  • Accepted : 2024.02.23
  • Published : 2024.02.29

Abstract

The Ti-6Al-4V alloy is widely used as an implant material due to its higher fatigue strength and strengthto-weight ratio compared to pure titanium, excellent corrosion resistance, and bone-like properties that promote osseointegration. For rapid osseointegration, the adhesion between the titanium surface and cellular biomolecules is crucial because adhesion, morphology, function, and proliferation are influenced by surface characteristics. Polymeric peptides and similar coating technologies have limited effectiveness, prompting a demand for alternative materials. There is growing interest in 2D nanomaterials, such as MoS2, for good corrosion resistance and antibacterial, and bioactive properties. However, to coat MoS2 thin films onto titanium, typically a low-temperature hydrothermal synthesis method is required, resulting in the synthesis of films with a toxic 1T@2H crystalline structure. In this study, through high-temperature annealing, we transformed them into a non-toxic 2H structure. The implant coating technique proposed in this study has good corrosion resistance and biocompatibility, and antibacterial properties.

Keywords

Acknowledgement

본 연구는 중소기업벤처부의 지역특화산업육성+(R&D) S3270844 및 한국연구재단 기본연구 (2022R1F1A1074660) 의 지원에 의해 수행되었다.

References

  1. R. Tejero, E. Anitua, G. Orive, Toward the biomimetic implant surface: Biopolymers on titanium-based implants for bone regeneration, Progress Polymer Science, 39, 1406 (2014). Doi: https://doi.org/10.1016/j.progpolymsci.2014.01.001
  2. X. Xie, C. Mao, X. Liu, Y. Zhang, Z. Cui, X. Yang, K. W. K. Yeung, H. Pan, P. K. Chu, S. Wu, Synergistic bacteria killing through photodynamic and physical actions of graphene oxide/ag/collagen coating, ACS Applied Materials & Interfaces, 9, 26417 (2017). Doi: https://doi.org/10.1021/acsami.7b06702
  3. L. Tan, J. Li, X. M. Liu, D. Cui, X. J. Yang, S. L. Zhu, Z. Y. Li, X. B. Yuan, Y. F. Zheng, K. W. K. Yeung, H. Pan, X. B. Wang, S. L. Wu, Rapid biofilm eradication on bone implants using red phosphorus and near-infrared light, Advanced Materials, 30, 1801808 (2018). Doi: https://doi.org/10.1002/adma.201801808
  4. L. Zhang, C. Y. Ning, T. Zhou, X. M. Liu, K. W. K. Yeung, T. J. Zhang, Z. S. Xu, X. B. Wang, S. L. Wu, P. K. Chu, Polymeric nanoarchitectures on Ti-based implants for antibacterial applications, ACS Applied Materials & Interfaces, 6, 17323 (2014). Doi: https://doi.org/10.1021/am5045604
  5. D. L. Yang, B. Du, Y. X. Yan, H. Q. Li, D. Zhang, T. X. Fan, Rice-Husk-templated hierarchical porous TiO2/SiO2 for enhanced bacterial removal, ACS Applied Materials & Interfaces, 6, 2377, (2014). Doi: https://doi.org/10.1021/am500206g
  6. T. Diu, N. Faruqui, T. Sjostrom, B. Lamarre, H. F. Jenkinson, B. Su, M. G. Ryadnov, Cicada-inspired cellinstructive nanopatterned arrays, Scientific Reports, 4, 7122 (2014). Doi: https://doi.org/10.1038/srep07122
  7. L. Zhao, Y. Hu, D. W. Xu, K.Y. Cai, Surface functionalization of titanium substrates with chitosan-lauric acid conjugate to enhance osteoblasts functions and inhibit bacteria adhesion, Colloids and Surfaces B: Biointerfaces, 119, 155 (2014). Doi: https://doi.org/10.1016/j.colsurfb.2014.05.002
  8. H. Qin, H. Cao, Y. C. Zhao, C. Zhu, T. Cheng, Q. J. Wang, X. C. Peng, M. Q. Cheng, J. X. Wang, G. D. Jin, Y. Jiang, X. L. Zhang, X. Y. Liu, P. K. Paul, Invitro and invivo anti-biofilm effects of silver nanoparticles immobilized on titanium, Biomaterials, 35, 9114 (2014). Doi: https://doi.org/10.1016/j.biomaterials.2014.07.040
  9. Z. Yuan, P. Liu, Y. S. Hao, Y. Ding, K. Y. Cai, In vitro and in vivo anti-biofilm effects of silver nanoparticles immobilized on titanium, Colloids and Surfaces B: Biointerfaces, 171, 597, (2018). Doi: https://doi.org/10.1016/j.colsurfb.2018.07.064
  10. M. K. Narbat, B. F. L. Lai, C. F. Ding, J. N. Kizhakkedathu, R. E. W. Hancock, R. Z. Wang, Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections, Biomaterials, 34, 5969 (2013). Doi: https://doi.org/10.1016/j.biomaterials.2013.04.036
  11. L. G. Harris, S. Tosatti,, M. Wieland, M. Texto and R. G. Richards, Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(l-lysine)-grafted-poly(ethylene glycol) copolymers, Biomaterials, 25, 413 (2004). Doi: https://doi.org/10.1016/j.biomaterials.2003.11.033
  12. K. G. Neoh, X. F. Hu, D. Zheng and E. T. Kang, Balancing osteoblast functions and bacterial adhesion on functionalized titanium surfaces, Biomaterials, 33, 2813 (2012). Doi: https://doi.org/10.1016/j.biomaterials.2012.01.018
  13. M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, H. Zhang, The chemistry of two dimensional layered transition metal dichalcogenide nanosheets, Nature Chemistry, 5, 263 (2013). Doi: https://doi.org/10.1038/Nchem.1589
  14. S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, A. Kis, 2D transition metal dichalcogenides, Nature Reviews Materials, 2, 17033 (2017). Doi: https://doi.org/10.1038/natrevmats.2017.33
  15. R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O'Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Z. Wang, A. I. Minett, V. Nicolosi, J. N. Coleman, Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions, Advanced Materials, 23, 3944 (2011). Doi: https://doi.org/10.1002/adma.201102584
  16. C. Zhang, D. F. Hu, J. W. Xu, M. Q. Ma, H. B. Xing, K. Yao, J. Ji, Z. K. Xu, Polyphenol-assisted exfoliation of transition metal dichalcogenides into nanosheets as photothermal nanocarriers for enhanced antibiofilm activity, ACS Nano, 12, 12347 (2018). Doi: https://doi.org/10.1021/acsnano.8b06321
  17. V. Agarwal, K. Chatterjee, Recent advances in the field of transition metal dichalcogenides for biomedical applications, Nanoscale, 10, 16365 (2018). Doi: https://doi.org/10.1039/c8nr04284e
  18. L. Liu, Z. Q. Liu, P. Huang, Z. Wu, S. Y. Jiang, Protein-induced ultrathin molybdenum disulfide (MoS2) flakes for a water-based lubricating system, RSC Advances, 6, 113315 (2016). Doi: https://doi.org/10.1039/c6ra23786j
  19. G. S. Bang, S. Cho, N. Son, G. W. Shim, B. K. Cho, S. Y. Choi, DNA-assisted exfoliation of tungsten dichalcogenides and their antibacterial effect, ACS Applied Materials & Interfaces, 8, 1943 (2016). Doi: https://doi.org/10.1021/acsami.5b10136
  20. D. Yim, J. E. Kim, H. I. Kim, J. K. Yang, T. W. Kang, J. Nam, S. H. Han, B. Jun, C. H. Lee, S. U. Lee, J. W. Kim, J. H. Kim, Adjustable intermolecular interactions allowing 2D transition metal dichalcogenides with prolonged scavenging activity for reactive oxygen species, Small, 14, 1800026 (2018). Doi: https://doi.org/10.1002/smll.201800026
  21. M. H. Shin, S. M. Baek, A. V. Polyakov, I. P. Semenova, R. Z. Valiev W. Hwang, S. K. Hahn and H. S. Kim, Molybdenum disulfide surface modification of ultrafine-grained titanium for enhanced cellular growth and antibacterial effect, Scientific reports, 8, 9907 (2018) Doi: https://doi.org/10.1038/s41598-018-28367-0
  22. Z. Yuan, B. Tao, Y. He, J. Liu, C. Lin, X. Shen, Y. Ding, Y. Yu, C. Mu, P. Liu, K. Cai, Biocompatible MoS2/PDA-RGD coating on titanium implant with antibacterial property via intrinsic ROS-independent oxidative stress and NIR irradiation, Biomaterials, 217, 119290 (2019). Doi: https://doi.org/10.1016/j.biomaterials.2019.119290
  23. Y. So, D. Yim, W. Son, H. Lee, S. Lee, C. Choi, C. S. Yang, J. Kim, Deciphering the therapeutic mechanism of topical WS2 nanosheets for the effective therapy of burn injuries, Applied Materials Today, 29, 101591 (2022). Doi: https://doi.org/10.1016/j.apmt.2022.101591
  24. X. Gan, L. Y. S. Lee, K. Wong, T. W. Lo, K. H. Ho, D. Y. Lei, and H. Zhao, 2H/1T phase transition of multilayer MoS2 by electrochemical incorporation of s vacancies, ACS Applied Energy Materials, 1, 4754 (2018). Doi: https://doi.org/10.1021/acsaem.8b00875
  25. S. Xiao, P. Xiao1, X. Zhang, D. Yan, X. Gu1, F. Qin, Z. Ni, Z. J. Han and K. Ostrikov, Atomic-layer soft plasma etching of MoS2, Scientific Reports, 6, 19945 (2016). Doi: https://doi.org/10.1038/srep19945
  26. J. Lee, M. J. Kim, B. G. Jeong, C. Kwon, Y. Cha, S. H. Choi, K. K. Kim, M. S. Jeong, Electrical role of sulfur vacancies in MoS2: Transient current approach, Applied Surface Science, 613, 155900 (2023). Doi: https://doi.org/10.1016/j.apsusc.2022.155900
  27. J. Quinn, R. McFadden, C. Chan, L. Carson, Titanium for Orthopedic Applications: An overview of surface modification to improve biocompatibility and prevent bacterial biofilm formation, iScience, 23, 101745 (2020). Doi: https://doi.org/10.1016/j.isci.2020.101745
  28. D. Gupta, V. Chauhan, R. Kumar, A comprehensive review on synthesis and applications of molybdenum disulfide (MoS2) material: Past and recent developments, Inorganic Chemistry Communications, 121, 108200 (2020). Doi: https://doi.org/10.1016/j.inoche.2020.108200
  29. Z. He, W. Que, Molybdenum disulfide nanomaterials: Structures, properties, synthesis and recent progress on hydrogen evolution reaction, Applied Materials Today, 3, 23 (2016). Doi: https://doi.org/10.1016/j.apmt.2016.02.001
  30. X. Li, H. Zhu, Two-dimensional MoS2: Properties, preparation, and applications, Journal of Materiomics, 1, 33 (2015). Doi: https://doi.org/10.1016/j.jmat.2015.03.003
  31. D. Prando, A. Brenna, M. V. Diamanti, S. Beretta, F. Bolzoni, M. Ormellese, and M. Pedeferri, Corrosion of Titanium: Part 1: Aggressive environments and main forms of degradation, Journal of Applied Biomaterials & Functional Materials, 15, 291 (2017). Doi: https://doi.org/10.5301/jabfm.5000387
  32. S. K. Park, H. C. Choe, Effects of ta-C coatings on surface characteristics of dental Ni-Ti files, Corrosion Science and Technology, 22, 368 (2023). Doi: http://doi.org/10.14773/cst.2023.22.5.368
  33. J. E. Go, J. K. Lee, H. C. Choe, Effects of wollastonite coating on surface characteristics of plasma electrolytic oxidized Ti-6Al-4V alloy, Corrosion Science and Technology, 22, 257 (2023). Doi: https://doi.org/10.14773/cst.2023.22.4.257
  34. Q. Li, B. Hu, Q. Yang, X. Cai, M. Nie, Y. Jin, L. Zhou, Y. Xu, Q. Pan, L. Fang, Interaction mechanism between multi-layered MoS2 and H2O2 for self-generation of reactive oxygen species, Environmentals Research, 191, 110227 (2020). Doi: https://doi.org/10.1016/j.envres.2020.110227
  35. Y. S. Kim, Synergistic effect of nitrogen and molybdenum on localized corrosion of stainless steels, Corrosion Science and Technology, 9, 20 (2010). Doi: https://doi.org/10.14773/cst.2010.9.1.020