DOI QR코드

DOI QR Code

전략급 무인기의 감시정찰을 위한 표적 스케줄링 및 편차 보정 기반 촬영계획 자동화 기술 연구

A Study on Sensor Collection Planning based on Target Scheduling and Deviation Correction for Strategic UAV Surveillance and Reconnaissance

  • 조정희 (국방과학연구소 항공기술연구원) ;
  • 최윤정 (국방과학연구소 항공기술연구원) ;
  • 이혜림 (국방과학연구소 항공기술연구원) ;
  • 정소영 (국방과학연구소 항공기술연구원)
  • Junghee Cho (Aerospace Technology Research Institute, Agency for Defense Development) ;
  • Yunjeong Choi (Aerospace Technology Research Institute, Agency for Defense Development) ;
  • Hayrim Lee (Aerospace Technology Research Institute, Agency for Defense Development) ;
  • Soyoung Jeong (Aerospace Technology Research Institute, Agency for Defense Development)
  • 투고 : 2023.08.17
  • 심사 : 2024.02.15
  • 발행 : 2024.04.05

초록

The strategic UAV for theater level ISR(Intelligence, Surveillance and Reconnaissance) mission typically has numerous ground targets over area of responsibility(AOR) or area of operation(AO). It is necessary to automatically incorporate these multitude of ground targets into mission planning process in order to collect ISR images before actual flight mission. In addition, weather information such as wind direction and/or velocity may have significant impacts on the qualities of collected sensor images, especially in SAR(Synthetic Aperture Radar) images. Thus weather factors in the operation altitude should also be considered in the mission planning stage. In this study, we propose a novel mission planning scheme based on target scheduling and deviation correction method incorporating weather factors.

키워드

과제정보

본 논문은 2022년 정부의 재원으로 수행된 연구 결과임(923001301).

참고문헌

  1. B. Kinzig, "Global Hawk systems engineering case study," Air Force Center for System Engineering, Air Force Institute of Technology, Doc. 31, 2009.
  2. W. Leister and US Air Force Wright Patterson Air Force Base United States, "MQ-9 Reaper Unmanned Aircraft System(MQ-9 Reaper)," pp. 6-8, 2015.
  3. C. P. Cote, "MQ-1C Gray eagle unmanned aircraft system(MQ-1C Gray Eagle)," US Army Redstone Arsenal United States: Huntsville, AL, USA, 2015.
  4. J. Ernst, S. Tsach and D. Penn, "Evolution of the Heron UAV family," Infotech@Aerospace, p. 7033, 2005.
  5. I. Hwang, C. Lee and K. Lim, "Countermeasures of the ROK military against the activation of UAVs: focusing on the trends of UAV in each country," Defense and Technology, Vol. 445, pp. 70-85, 2016.
  6. A. Ramirez, "Global Hawk - persistent, long range, high altitude, multi-int capability for the US air force and the battlefield commander," AIAA/ICAS International Air and Space Symposium and Exposition: The Next 100 Years, p. 2615, 2003.
  7. A. J. Sanchez-Fernandez, L. F. Romero, G. Bandera and S. Tabik, "VPP: visibility-based path planning heuristic for monitoring large regions of complex terrain using a UAV onboard camera," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 15, pp. 944-955. 2021. https://doi.org/10.1109/JSTARS.2021.3134948
  8. V. Govindaraju, G. Leng and Z. Qian, "Visibility-based UAV path planning for surveillance in cluttered environments," IEEE International Symposium on Safety, Security, and Rescue Robotics, pp. 1-6, 2014.
  9. L. Geng, Y. F. Zhang, P. F. Wang, J. J. Wang, J. Y. H. Fuh, and S. H. Teo, "UAV surveillance mission planning with gimbaled sensors," 11th IEEE International Conference on Control & Automation (ICCA), pp. 320-325, 2013.
  10. L. Geng, Y. F. Zhang, J. J. Wang, J. Y. H. Fuh and S. H. Teo, "Mission planning of autonomous UAVs for urban surveillance with evolutionary algorithms," 10th IEEE International Conference on Control and Automation(ICCA), pp. 828-833, 2013.
  11. M. Seleck, P. Vana, M. Rollo and T. Meiser, "Wind corrections in flight path planning," International Journal of Advanced Robotic Systems, Vol. 10, 248, pp. 1-10, 2013. https://doi.org/10.5772/52938
  12. H. M. P. C. Jayaweera and S. Hanoun, "Path planning of Unmanned Aerial Vehicles(UAVs) in windy Environments," Drones, Vol. 6, No. 5, 101, pp. 1-21, 2022. https://doi.org/10.3390/drones6050101
  13. A. Thibbotuwawa, et al., "UAV mission planning resistant to weather uncertainty," Sensors, Vol. 20, No. 2, 515, pp. 1-24, 2020. https://doi.org/10.1109/JSEN.2019.2959158
  14. J. Cho, H. Lee, S. Kwon and Y. Kim, "Target management strategy in UAV mission planning for long -endurance surveillance and reconnaissance," KIMST Annual Conference Proceedings, pp. 1442-1443, 2020.
  15. D. T. Larose and C. D. Larose, "Discovering knowledge in data: an introduction to data mining," John Wiley & Sons, Inc. USA, Vol. 4, 2014.
  16. B. Sun, H. Xu, Y. Wang and W. Yang, "Orthogonal resolution analysis for squint SAR image," Proceedings of 11th European Conference on Synthetic Aperture Radar, pp. 401-404, 2016.
  17. S. Yoon, "An experimental analysis of NESZ and swath width in squint geometry for space-borne SAR imaging," Journal of KIIT, Vol. 16, pp. 71-79, 2018. https://doi.org/10.14801/jkiit.2018.16.6.71
  18. J. Cho, Y. Choi and H. Lee, "An efficient mission planning method using high altitude wind information for long-endurance surveillance and reconnaissance UAV," KSAS 2022 Fall Conference, pp. 266-267, 2022.