DOI QR코드

DOI QR Code

The contact loads inversion between surrounding rock and primary support based on dynamic deformation curve of a deep-buried tunnel with flexible primary support in consideration

  • Jian Zhou (Department of Civil Engineering, Hangzhou City University) ;
  • Yunliang Cui (Department of Civil Engineering, Hangzhou City University) ;
  • Xinan Yang (The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University) ;
  • Mingjie Ma (The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University) ;
  • Luheng Li (The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University)
  • Received : 2023.10.08
  • Accepted : 2024.02.28
  • Published : 2024.03.25

Abstract

The contact pressure between the surrounding rock and the support is an important indicator of the surrounding rock pressure. There has been a bottleneck in the prediction of contact loads between surrounding rock and primary support in deep-buried mountain tunnels. The main reason is that a reliable method wasn't existed to quantify the contact loads. This study had been taken into account the flexible support role of the primary support, and the fitting curve of surrounding rock deformation for dynamic tunnel construction was proposed. New formulas for the calculation of contact loads between surrounding rock and primary support were obtained by inversion. Comparative analysis of the calculation results with numerical simulation verified the reliability of the calculation method in this study. It can be seen from the analyses that the contact load between surrounding rock and primary support increases, remains unchanged and decreases during acceleration, uniform velocity and deceleration, respectively, and the deformation of the surrounding rock in the acceleration and deceleration stages cannot completely converted into contact loads. The contact loads between surrounding rock and primary support of medium-strength and weak surrounding rock tunnels are generally within 150 kPa and 1 MPa, respectively. For tunnels with weak surrounding rock, advanced support can be installed to reduce the unique release coefficient λ0 and the value of the constant D, with the purpose of reducing the contact loads between surrounding rock and primary support. Changes in support parameters have a small effect on the contact loads between surrounding rock and primary support, but increase or decrease the safety factor, resulting in a waste of resources or a situation that threatens the safety of the support. The results of this research provide guidance for the prediction of contact loads between surrounding rock and primary support for dynamic tunnel construction.

Keywords

Acknowledgement

This study is sponsored by the Scientific Research Project of Zhejiang Provincial Department of Education (Y202351526) and Scientific Research Project of Zhejiang Provincial Transportation Department (2021050). The financial supports are greatly appreciated.

References

  1. Alejano, L.R., Rodriguez-Dono, A. and Veiga, M. (2012), "Plastic radii and longitudinal deformation profiles of tunnels excavated in strain-softening rock masses", Tunn. Undergr. Sp. Tech., 30(1), 169-182. https://doi.org/10.1016/j.tust.2012.02.017.
  2. Carranza-Torres, C. (2000), "Application of the convergence confinement method of tunnel design to rock masses that satisfy the Hoek-Brown failure criterion", Tunn. Undergr. Sp. Tech., 15(2),187-213. https://doi.org/10.1016/S0886-7798(00)00046-8.
  3. Carranza-Torres, C. and Fairhurst, C. (1999), "General formulation of the elasto-plastic response of openings in rock using the Hoek-Brown failure criterion", Int. J. Rock. Mech. Min. Sci., 36(6), 777-809. https://doi.org/10.1016/S0148-9062(99)00047-9.
  4. Cai, Y., Jiang, Y.J. and Djamaluddin, I. (2015), "An analytical model considering interaction behavior of grouted rock bolts for convergence-confinement method in tunneling design", Int. J. Rock. Mech. Min. Sci., 76, 112-126. https://doi.org/10.1016/j.ijrmms.2015.03.006.
  5. Chinaei, F., Ahangari, K. and Shirinabadi, R. (2021), "Hoek-Brown failure criterion for damage analysis of tunnels subjected to blast load", Geomech. Eng. 26(1), 41-47. https://doi.org/10.12989/gae.2021.26.1.041.
  6. Dehnavi, R.N. and Sadeghi, M. (2019), "Deterioration of weak rocks over time and its effect on designing tunnel support systems", B. Eng. Geol. Environ., 78(2), 1045-1056. https://doi.org/10.1007/s10064-017-1154-9.
  7. Fahimifar, A., Ghadami, H. and Ahmadvand, M. (2015). "The ground response curve of underwater tunnels, excavated in a strain-softening rock mass". Geomech. Eng. 8(3), 323-359. https://doi.org/10.12989/gae.2015.8.3.323.
  8. Fan, S.Y., Song, Z.P., Xu, T., Wang, K.M. and Zhang, Y.W. (2021), "Tunnel deformation and stress response under the bilateral foundation pit construction: a case study", Arch. Civ. Mech. Eng., 21(3), 109. https://doi.org/10.1007/s43452-021-00259-7.
  9. Feng, Q., Jiang, B.S. and Zhang, Q. (2014), "Analytical elasto-plastic solution for stress and deformation of surrounding rock in cold region tunnels", Cold. Reg. Sci. Technol., 108, 59-68. https://doi.org/10.1016/j.coldregions.2014.08.001.
  10. Guo, Z.Z., Qiu, D.H., Yu, Y.H., Xue, Y.G., Liu, Q.S., Zhang, W.M. and Li, Z.Q. (2023), "Analysis and prediction of nonuniform deformation in composite strata during tunnel excavation", Comput. Geotech., 157, 105338. https://doi.org/10.1016/j.compgeo.2023.105338.
  11. Hoek, E. (2001), "The role of experts in tunneling experience from Greece and the world", Keynote ecture, Iaonnina, Egnatia Odos Tunnelling Conference.
  12. Hu, J., He, M.C., Li, H.R., Tao, Z.G., Liu, D.Q., Cheng, T. and Peng, D. (2023), "Rockburst hazard control using the excavation compensation method (ECM): a case study in the Qinling water conveyance tunnel", Eng., 1-17. https://doi.org/10.1016/j.eng.2023.11.013.
  13. Hu, Z., Zhang, J.W., Yang, Y.T., Wang, Z.C., Xie, Y.L., Qiu, J.L., He, S.Y. and Wang, X.L. (2022), "Study on the surrounding rock pressure characteristics of loess tunnel based on statistical analysis in China", Appl. Sci., 12(13), 6329. https://doi.org/10.3390/app12136329.
  14. Liu, J.H., Liu, X.M., Zhang, Y.J. and Xiao, T. (2015), "Numerical analysis and field monitoring tests on shallow tunnels under weak surrounding rock", J. Cent. South. Univ. 22(10), 4056-4063. https://doi.org/10.1007/s11771-015-2950-7.
  15. Liu, W.W., Feng, Q., Fu, S.G. and Wang, C.X. (2018), "Elasto-plastic solution for cold-regional tunnels considering the compound effect of non-uniform frost heave, supporting strength and supporting time", Tunn. Undergr. Sp. Tech., 82, 293-302. https://doi.org/10.1016/j.tust.2018.08.054.
  16. Luo, J.W., Zhang, D.L., Sun, Z.Y., Fang, Q., Liu, D.P., Xu, T. and Li, R. (2022), "Numerical modelling and field monitoring study on large-span tunnelling using pretensioned bolt-cable combined support system", Tunn. Undergr. Sp. Technol., 132, 104911. https://doi.org/10.1016/j.tust.2022.104911.
  17. Miranda, T., Dias, D., Pinheiro, M. (2015), "Methodology for real-time adaptation of tunnels support using the observational method", Geomech. Eng., 8(2), 153-171. https://doi.org/10.12989/gae.2015.8.2.153.
  18. Moon, J.S., An, J.W., Kim, H.K., Lee, J.G. and Lattner, T. (2022), "Evaluation criteria for freezing and thawing of tunnel concrete lining according to theoretical and experimental analysis", Geomech. Eng., 29(3), 349-357. https://doi.org/10.12989/gae.2022.29.3.349.
  19. Oreste, P.P. (2003a), "A procedure for determining the reaction curve of shotcrete lining considering transient conditions", Rock. Mech. Rock. Eng., 36(3), 209-236. https://doi.org/10.1007/s00603-002-0043-z.
  20. Oreste, P.P. (2003b), "Analysis of structural interaction in tunnels using the convergence-confinement approach", Tunn. Undergr. Sp. Tech., 18, 347-363. https://doi.org/10.1016/S0886-7798(03)00004-X.
  21. Park, K.H. and Kim, Y.J. (2006), "Analytical solution for a circular opening in an elastic-brittle-plastic rock", Int. J. Rock. Mech. Min. Sci., 43(4), 611-622. https://doi.org/10.1016/j.ijrmms.2005.11.004.
  22. Panet, M. (1995), "Le Calcul des tunnels par la methode de convergence-confinement", Paris: Press de l'ecole Nationale des Ponts et Chaussees.
  23. Prassetyo, S.H. and Gutierrez, M. (2018), "Effect of transient coupled hydro-mechanical response on the longitudinal displacement profile of deep tunnels in saturated ground", Tunn. Undergr. Sp. Tech., 75, 11-20. https://doi.org/10.1016/j.tust.2018.02.003.
  24. Serrano, A., Olalla, C. and Reig, I. (2011), "Convergence of circular tunnels in elastoplastic rock masses with non-linear failure criteria and non-associated flow laws", Int. J. Rock. Mech. Min. Sci., 48(6), 878-887. https://doi.org/10.1016/j.ijrmms.2011.06.008.
  25. Rabcewicz, L.V. (1964), "The new Austrian tunnelling method", Water. Power, 17(1), 511-515.
  26. Ranjbarnia, M., Rahimpour, N. and Oreste, P. (2020), "A new analytical-numerical solution to analyze a circular tunnel using 3D Hoek-Brown failure criterion", Geomech. Eng., 22(1), 11-23. https://doi.org/10.12989/gae.2020.22.1.011.
  27. Shen, Q., Zheng, J.J., Cui, L., Pan, Y. and Cui, B. (2019), "A procedure for interaction between rock mass and liner for deep circular tunnel based on new solution of longitudinal displacement profile", Eur. J. Environ. Civ. Eng., 26(1), 280-298. https://doi.org/10.1080/19648189.2019.1657960.
  28. Sun, M.S., Ma, T., Shen, Z.J., Wu, X. and Wang, M.S. (2018), "Study of lining sharing surrounding rock pressure in composite lining", Rock. Soil. Mech., 39(S1), 437-445.
  29. Tian, X.X., Song, Z.P., Wang, H.Z., Zhang, Y.W. and Wang, J.B. (2022), "Evolution characteristics of the surrounding rock pressure and construction techniques: A case study from Taoshuping tunnel", Tunn. Undergr. Sp. Tech., 125, 104522. https://doi.org/10.1016/j.tust.2022.104522.
  30. Tong, J.S. (2020), "General formulas for calculating surrounding rock pressure of tunnels and underground spaces", KSCE. J. Civ. Eng., 24(4), 1348-1356. https://doi.org/10.1007/s12205-020-0943-z.
  31. Vlachopoulos, N. and Diederichs, M.S. (2009), "Improved longitudinal displacement profiles for convergence confinement analysis of deep tunnels", Rock. Mech. Rock. Eng., 42(2), 131-146. https://doi.org/10.1007/s00603-009-0176-4.
  32. Zhang, B.Q., Chen, F.Q. and Wang, Q.Y. (2019), "Elastoplastic solutions for surrounding rock masses of deep-buried circular tunnels with non-darcian flow", Int. J. Geomech., 19(7), 1-12. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001442.
  33. Zhang, D.L. and Chen, L.P. (2016), "Compound structural characteristics and load effect of tunnel surrounding rock", Chi. J. Rock. Mech. Eng., 35(3), 456-469. (in Chinese)
  34. Zhang, S.C., Mu, C.M., Feng, X.H., Ma, K., Guo, X. and Zhang, X.S. (2024), "Intelligent dynamic warning method of rockburst risk and level based on recurrent neural network", Rock. Mech. Rock. Eng., Early Access. https://doi.org/ 10.1007/s00603-023-03715-3.
  35. Zhang, Z.Q., Li, H.Y., Liu, H.Y., Li, G.J. and Shi, X.Q. (2014), "Load transferring mechanism of pipe umbrella support in shallow-buried tunnels", Tunn. Undergr. Space Tech., 43, 213-221. https://doi.org/10.1016/j.tust.2014.05.018.
  36. Zhang, Y.J., Su, K., Qian, Z.D. and Wu, H.G. (2019), "Improved longitudinal displacement profile and initial support for tunnel excavation", KSCE. J. Civ. Eng., 23(6), 2746-2755. https://doi.org/10.1007/s12205-019-0411-9.
  37. Zhou, J. and Yang, X.A. (2021a), "An analysis of the support loads on composite lining of deep-buried tunnels based on the Hoek-Brown strength criterion", Tunn. Undergr. Sp. Tech., 118, 104174. https://doi.org/10.1016/j.tust.2021.104174.
  38. Zhou, J., Yang, X.A., Ma, M.J. and Li, L.H. (2021b), "The support load analysis of deep-buried composite lining tunnel in rheological rock mass", Comput. Geotech., 130, 103934. https://doi.org/10.1016/j.compgeo.2020.103934.
  39. Zhou, J., Yang, X.A. and Chu, Z. (2023a), "Load laws of composite lining in mountain tunnel model tests and numerical simulation validation", J. Mountain. Sci., 20(7), 2041-2057. https://doi.org/10.1007/s11629-023-8043-4.
  40. Zhou, J., Yang, X.A. and Ding, Z. (2023b), "A secondary development based on the Hoek-Brown criterion for rapid numerical simulation prediction of mountainous tunnels in China", Geomech. Eng., 34(1), 69-86. https://doi.org/10.12989/gae.2023.34.1.069.