DOI QR코드

DOI QR Code

A novel method for solving structural problems: Elastoplastic analysis of a pressurized thick heterogeneous sphere

  • Abbas Heydari (Department of Civil Engineering, Technical and Vocational University (TVU))
  • Received : 2023.03.16
  • Accepted : 2024.02.19
  • Published : 2024.01.25

Abstract

If the governing differential equation arising from engineering problems is treated as an analytic, continuous and derivable function, it can be expanded by one point as a series of finite numbers. For the function to be zero for each value of its domain, the coefficients of each term of the same power must be zero. This results in a recursive relationship which, after applying the natural conditions or the boundary conditions, makes it possible to obtain the values of the derivatives of the function with acceptable accuracy. The elastoplastic analysis of an inhomogeneous thick sphere of metallic materials with linear variation of the modulus of elasticity, yield stress and Poisson's ratio as a function of radius subjected to internal pressure is presented. The Beltrami-Michell equation is established by combining equilibrium, compatibility and constitutive equations. Assuming axisymmetric conditions, the spherical coordinate parameters can be used as principal stress axes. Since there is no analytical solution, the natural boundary conditions are applied and the governing equations are solved using a proposed new method. The maximum effective stress of the von Mises yield criterion occurs at the inner surface; therefore, the negative sign of the linear yield stress gradation parameter should be considered to calculate the optimal yield pressure. The numerical examples are performed and the plots of the numerical results are presented. The validation of the numerical results is observed by modeling the elastoplastic heterogeneous thick sphere as a pressurized multilayer composite reservoir in Abaqus software. The subroutine USDFLD was additionally written to model the continuous gradation of the material.

Keywords

References

  1. Akbari, A., Bagri, A. and Natarajan, S. (2018), "Dynamic response of viscoelastic functionally graded hollow cylinder subjected to thermo-mechanical loads", Compos. Struct., 201, 414-422. https://doi.org/10.1016/j.compstruct.2018.06.044
  2. Atrian, A., Jafari Fesharaki, J. and Nourbakhsh, S.H. (2015), "Thermo-electromechanical behavior of functionally graded piezoelectric hollow cylinder under non-axisymmetric loads", Appl. Math. Mech., 36(7), 939-954. https://doi.org/10.1007/s10483-015-1959-9
  3. Babaei M.i, Atasoy A., Hajirasouliha I., Mollaei S. and Jalilkhani M. (2022), "Numerical solution of beam equation using neural networks and evolutionary optimization tools", Adv. Comp. Des., 7(1), 1-17, https://doi.org/10.12989/acd.2022.7.1.001
  4. Barati, A.R. and Jabbari, M. (2015), "Two-dimensional piezothermoelastic analysis of a smart FGM hollow sphere", Acta Mech., 226(7), 2195-2224. https://doi.org/10.1007/s00707-015-1304-8
  5. Daneshjou, K., Talebitooti, R. and Tarkashvand, A. (2017), "An exact solution of three-dimensional elasticity for sound transmission loss through FG cylinder in presence of subsonic external flow", Int. J. Mech. Sci., 120, 105-119. https://doi.org/10.1016/j.ijmecsci.2016.10.008
  6. Fang, X.Q., Liu, H.W., Feng, W.J. and Liu, J.X. (2015), "Size-dependent effects on electromechanical response of multilayer piezoelectric nano-cylinder under electro-elastic waves", Compos. Struct., 125, 23-28. https://doi.org/10.1016/j.compstruct.2015.01.046
  7. Fenjan R.M., Ahmed R.A., Hamad L.B. and Faleh N.M. (2020), "A review of numerical approach for dynamic response of strain gradient metal foam shells under constant velocity moving loads", Adv. Comp. Des., 5(4), https://doi.org/10.12989/acd.2020.5.4.349
  8. Ghadiri Rad, M.H., Shahabian, F. and Hosseini, S.M. (2015), "A meshless local Petrov-Galerkin method for nonlinear dynamic analyses of hyper-elastic FG thick hollow cylinder with Rayleigh damping", Acta Mech., 226(5), 1497-1513. https://doi.org/10.1007/s00707-014-1266-2
  9. Heydari, A. (2015), "Spreading of Plastic Zones in Functionally Graded Spherical Tanks Subjected to Internal Pressure and Temperature Gradient Combinations", Iran. J. Mech. Eng. Technol., 16(2), 5-25.
  10. Heydari, A. (2018), "Elastoplastic analysis of thick-walled vessels with isotropic strain hardening behavior using nonlinear compatibility relation", Proceedings of the 7th International Conference of Civil Engineering, Architecture and Urban Economy Development, Shiraz, Iran.
  11. Heydari, A. (2019), "Elasto-plastic analysis of cylindrical vessel with arbitrary material gradation subjected to thermo-mechanical loading via DTM", Arab. J. Sci. Eng., 44(10), 8875-8891. https://doi.org/10.1007/s13369-019-03910-x
  12. Heydari, A. and Jalali A.R. (2017), "A new scheme for buckling analysis of bidirectional functionally graded Euler beam having arbitrary thickness variation rested on Hetenyi elastic foundation", Modar. Mech. Eng., 17(1), 47-55. http://dorl.net/dor/20.1001.1.10275940.1396.17.1.17.7 1001.1.10275940.1396.17.1.17.7
  13. Heydari, A. and Kazemi M.T. (2009), "Elasto-plastic analysis of thick walled tanks subjected to internal pressure", Int. J. Adv. Des. Manuf. Technol., 3(1), 11-18. https://sanad.iau.ir/Journal/admt/Article/873201
  14. Kossakowski P.G. and Uzarska I. (2019), "Numerical modeling of an orthotropic RC slab band system using the Barcelona model", Adv. Comp. Des., 4(3), 211-21, https://doi.org/10.12989/acd.2019.4.3.211
  15. Leu S.Y., Liau K.C. and Lin Y.C. (2014), "Plastic limit pressure of spherical vessels with combined hardening involving large deformation", Int. J. Pres. Ves. Pip., 114, 16-22. https://doi.org/10.1016/j.ijpvp.2013.11.007
  16. Maleki M., Farrahi, G.H., Haghpanah Jahromi, B. and Hosseinian E. (2010), "Residual stress analysis of autofrettaged thick-walled spherical pressure vessel", Int. J. Pres. Ves. Pip., 87(7), 396-401. https://doi.org/10.1016/j.ijpvp.2010.04.002
  17. Moghaddam, S. and R. Masoodi, A. (2019), "Elastoplastic nonlinear behavior of planar steel gabled frame", Adv. Comp. Des., 4(4), 397-413. https://doi.org/10.12989/acd.2019.4.4.397
  18. Najibi, A. (2017), "Mechanical stress reduction in a pressurized 2D-FGM thick hollow cylinder with finite length", Int. J. Press. Vessels Pip. 153, 32-44. https://doi.org/10.1016/j.ijpvp.2017.05.007
  19. Oh S.T., Lee D.J., Yi S.T. and Jeong B.J. (2023), "Numerical analysis for dynamic characteristics of bridge considering next-generation high-speed train", Adv. Comp. Des., 8(1), 1-12, https://doi.org/10.12989/acd.2023.8.1.001
  20. Polatov, A.M., Khaldjigitov, A.A. and Ikramov, A.M. (2020), "Algorithm of solving the problem of small elastoplastic deformation of fiber composites by FEM", Adv. Comp. Des., 5(3), 305-321. https://doi.org/10.12989/acd.2020.5.3.305
  21. Sabzikar Boroujerdy, M. and Eslami, M.R. (2014), "Axisymmetric snap-through behavior of Piezo-FGM shallow clamped spherical shells under thermo-electro-mechanical loading", Int. J. Press. Vessels Pip. 120-121, 19-26. https://doi.org/10.1016/j.ijpvp.2014.03.008
  22. Sachdeva, C. and Padhee, S.S. (2018), "Asymptotically exact analytical formulations", Appl. Math. Model. 54, 782-802. https://doi.org/10.1016/j.apm.2017.10.019
  23. Saviz, M.R. (2017), "Electro-elasto-dynamic analysis of functionally graded cylindrical shell with piezoelectric rings using differential quadrature method", Acta Mech. 228(5), 1645-1670. https://doi.org/10.1007/s00707-016-1746-7
  24. Sim L.C., Yeo W.H., Purbolaksono J., Saw L.H. and Tey J.Y. (2021), "Analytical solution of thermomechanical stresses of multi-layered hollow spherical pressure vessel", Int. J. Pres. Ves. Pip., 191, 104355. https://doi.org/10.1016/j.ijpvp.2021.104355
  25. Ushio, Y., Saruwatari, T. and Nagano, Y. (2019), "Elastoplastic FEM analysis of earthquake response for the field-bolt joints of a tower-crane mast", Adv. Comp. Des., 4(1), 53-72. https://doi.org/10.12989/acd.2019.4.1.053
  26. Vatul'yan, A.O. and Yurov, V.O. (2016), "Wave processes in a hollow cylinder in an inhomogeneous prestress field", J. Appl. Mech. Tech. Phys., 57(4), 731-739. https://doi.org/10.1134/S0021894416040180
  27. Yildirim A., Yarimpabuc D., Arikan V., Eker M. and Celebi K. (2022), "Nonlinear thermal stress analysis of functionally graded spherical pressure vessels", Int. J. Pres. Ves. Pip., 200, 104830. https://doi.org/10.1016/j.ijpvp.2022.104830
  28. Zaid M. and Sadique Md. R., (2020), "Numerical modelling of internal blast loading on a rock tunnel", Adv. Comp. Des., 5(4), 417-443, https://doi.org/10.12989/acd.2020.5.4.417