DOI QR코드

DOI QR Code

The Effect of an 8-weeks Velocity-based Training on Strength and Mechanical Power of Professional Athletes

8주간 속도 기반 트레이닝이 전문 운동선수의 근력과 근 파워 능력에 미치는 영향

  • Jae Ho Kim (Department of Physical Education, Graduate School of Korea National Sport University) ;
  • Sukhoon Yoon (Department of Community Sport, Korea National Sport University)
  • Received : 2024.01.27
  • Accepted : 2024.02.10
  • Published : 2024.03.31

Abstract

Objective: The purpose of this study is to apply 8-week velocity-based training to domestic professional athletes and the kinematic and kinetic analysis of the 1-RM improvement of back squat and power clean, which can represent strength-power ability, to verify the effectiveness of velocity-based training in Korea and to establish a basic basis. Method: The subjects who participated in this study were 10 professional athletes from K University (age: 21.40 ± 0.97 yrs., height: 179.90 ± 3.54 cm., body mass: 71.298 ± 2.98 kg). All subjects performed back squat and power clean 1-RM before and after 8-weeks of velocity-based training. A 3-dimensional motion analysis with 8 infrared cameras and 4 channels of EMG was performed in this study. A paired t-test was used for statistical verification. The significant level was set at α=.05. Results: Both Back squat and Power Clean 1-RM showed statistically significant increases (p<.05). In the case of back squat, there was no statistically significant difference in both kinematic and kinetic variables (p>.05). In the case of Power Clean, only the quadriceps of Phase 1 showed a statistically significant decrease (p<.05). Conclusion: Domestic professional athletes can improve their strength-power ability through velocity-based training, and such training for at least 8-weeks is considered a way to improve their performance.

Keywords

References

  1. Baena-Marin, M., Rojas-Jaramillo, A., Gonzalez-Santamaria, J., Rodriguez-Rosell, D., Petro, J. L., Kreider, R. B. & Bonilla, D. A. (2022). Velocity-based resistance training on 1-rm, jump and sprint performance: a systematic review of clinical trials. Sports, 10(1), 8.
  2. Banyard, H. G., Nosaka, K., Vernon, A. D. & Haff, G. G. (2018). The reliability of individualized load-velocity profiles. International Journal of Sports Physiology and Performance, 13(6), 763-769.
  3. Banyard, H. G., Tufano, J. J., Weakley, J. J., Wu, S., Jukic, I. & Nosaka, K. (2020). Superior changes in jump, sprint, and change-of-direction performance but not maximal strength following 6 weeks of velocity-based training compared with 1-repetition-maximum percentage-based training. International Journal of Sports Physiology and Performance, 16(2), 232-242.
  4. Butler, R. J., Plisky, P. J., Southers, C., Scoma, C. & Kiesel, K. B. (2010). Biomechanical analysis of the different classifications of the Functional Movement Screen deep squat test. Sports Biomechanics, 9(4), 270-279.
  5. Campos, G. E., Luecke, T. J., Wendeln, H. K., Toma, K., Hagerman, F. C., Murray, T. F., Ragg, K. E, Ratamess, N. A, Kiraemer, W. J. & Staron, R. S. (2002). Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. European Journal of Applied Physiology, 88(1), 50-60.
  6. Dorrell, H. F., Smith, M. F. & Gee, T. I. (2020). Comparison of velocity-based and traditional percentage-based loading methods on maximal strength and power adaptations. The Journal of Strength & Conditioning Research, 34(1), 46-53.
  7. Escamilla, R. F., Fleisig, G. S., Zheng, N. A. I. Q. U. A. N., Lander, J. E., Barrentine, S. W., Andrews, J. R. & Moorman III, C. T. (2001). Effects of technique variations on knee biomechanics during the squat and leg press. Medicine & Science in Sports & Exercise, 33(9), 1552-1566.
  8. Fry, A. C., Smith, J. C. & Schilling, B. K. (2003). Effect of knee position on hip and knee torques during the barbell squat. The Journal of Strength & Conditioning Research, 17(4), 629-633.
  9. Galiano, C., Pareja-Blanco, F., Hidalgo de Mora, J. & Saez de Villarreal, E. (2022). Low-velocity loss induces similar strength gains to moderate-velocity loss during resistance training. Journal of Strength and Conditioning Research, 36(2), 340-345.
  10. Grgic, J., Lazinica, B., Schoenfeld, B. J. & Pedisic, Z. (2020). Test-retest reliability of the one-repetition maximum (1-RM) strength assessment: a systematic review. Sports Medicine-Open, 6(1), 1-16.
  11. Guerriero, A., Varalda, C. & Piacentini, M. F. (2018). The role of velocity-based training in the strength periodization for modern athletes. Journal of Functional Morphology and Kinesiology, 3(4), 55.
  12. Haff, G. G. & Triplett, N. T. (Eds.). (2015). Essentials of strength training and conditioning 4th edition. Champaign: Human kinetics.
  13. Halson, S. L. (2014). Monitoring training load to understand fatigue in athletes. Sports Medicine, 44(2), 139-147.
  14. Hedrick, A. (2004). Teaching the clean. Strength & Conditioning Journal, 26(4), 70-72.
  15. Hoffman, J. R. (2011). NSCA's guide to program design. Champaign: Human Kinetics.
  16. James, L. P., Suchomel, T. J., Comfort, P., Haff, G. G. & Connick, M. J. (2022). Rate of force development adaptations after weightlifting-style training: the influence of power clean ability. The Journal of Strength & Conditioning Research, 36(6), 1560-1567.
  17. Jimenez-Reyes, P., Castano-Zambudio, A., Cuadrado-Penafiel, V., Gonzalez-Hernandez, J. M., Capelo-Ramirez, F., Martinez-Aranda, L. M. & Gonzalez-Badillo, J. J. (2021). Differences between adjusted vs. non-adjusted loads in velocity-based training: Consequences for strength training control and programming. PeerJ, 9, e10942.
  18. Jovanovic, M. & Flanagan, E. P. (2014). Researched applications of velocity-based strength training. Journal of Australian Strength and Conditioning, 22(2), 58-69.
  19. Kim, S. H., Kwon, O. Y., Park, K. N., Jeon, I. C. & Weon, J. H. (2015). Lower extremity strength and the range of motion in relation to squat depth. Journal of Human Kinetics, 45(1), 59-69.
  20. Kritz, M., Cronin, J. & Hume, P. (2009). The bodyweight squat: A movement screen for the squat pattern. Strength & Conditioning Journal, 31(1), 76-85.
  21. Mauntel, T. C., Begalle, R. L., Cram, T. R., Frank, B. S., Hirth, C. J., Blackburn, T. & Padua, D. A. (2013). The effects of lower extremity muscle activation and passive range of motion on single leg squat performance. The Journal of Strength & Conditioning Research, 27(7), 1813-1823.
  22. Orange, S. T., Metcalfe, J. W., Robinson, A., Applegarth, M. J. & Liefeith, A. (2019). Effects of in-season velocity-versus percentage-based training in academy rugby league players. International Journal of Sports Physiology and Performance, 15(4), 554-561.
  23. Pareja-Blanco, F., Sanchez-Medina, L., Suarez-Arrones, L. & Gonzalez-Badillo, J. J. (2017b). Effects of velocity loss during resistance training on performance in professional soccer players. International Journal of Sports Physiology and Performance, 12(4), 512-519.
  24. Pareja-Blanco, F., Rodriguez-Rosell, D., Sanchez-Medina, L., Sanchis-Moysi, J., Dorado, C., Mora-Custodio, R., Yanez-Garcia, J. M., Morales-Alamo, D., Perez-Suarez, I., Calbet, J. A. L. & Gonzalez-Badillo, J. J. (2017a). Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scandinavian Journal of Medicine & Science in Sports, 27(7), 724-735.
  25. Ruf, L., Chery, C. & Taylor, K. L. (2018). Validity and reliability of the load-velocity relationship to predict the one-repetition maximum in deadlift. The Journal of Strength & Conditioning Research, 32(3), 681-689.
  26. Rippetoe, M. & Kilgore, L. (2017). Starting strength. Texas: The Aasgaard Company.
  27. Rodriguez-Rosell, D., Yanez-Garcia, J. M., Mora-Custodio, R., Pareja-Blanco, F., Ravelo-Garcia, A. G., Ribas-Serna, J. & Gonzalez-Badillo, J. J. (2020a). Velocity-based resistance training: impact of velocity loss in the set on neuromuscular performance and hormonal response. Applied Physiology, Nutrition, and Metabolism, 45(8), 817-828.
  28. Schoenfeld, B. J. (2010). Squatting kinematics and kinetics and their application to exercise performance. The Journal of Strength & Conditioning Research, 24(12), 3497-3506.
  29. Signore, N. (2021). Velocity-Based Training: How to Apply Science, Technology, and Data to Maximize Performance. Champaign: Human Kinetics Publishers.
  30. Suchomel, T. J., Wright, G. A., Kernozek, T. W. & Kline, D. E. (2014). Kinetic comparison of the power development between power clean variations. The Journal of Strength & Conditioning Research, 28(2), 350-360.
  31. Thompson, S. W., Rogerson, D., Dorrell, H. F., Ruddock, A. & Barnes, A. (2020). The reliability and validity of current technologies for measuring barbell velocity in the free-weight back squat and power clean. Sports, 8(7), 94.
  32. Weakley, J., Mann, B., Banyard, H., McLaren, S., Scott, T. & Garcia-Ramos, A. (2021). Velocity-based training: From theory to application. Strength & Conditioning Journal, 43(2), 31-49.
  33. Weakley, J. J., Till, K., Read, D. B., Roe, G. A., Darrall-Jones, J., Phibbs, P. J. & Jones, B. (2017). The effects of traditional, superset, and tri-set resistance training structures on perceived intensity and physiological responses. European Journal of Applied Physiology, 117(9), 1877-1889.
  34. Wlodarczyk, M., Adamus, P., Zielinski, J. & Kantanista, A. (2021). Effects of Velocity-Based Training on Strength and Power in Elite Athletes - A Systematic Review. International Journal of Environmental Research and Public Health, 18(10), 5257.