DOI QR코드

DOI QR Code

Resonance Mode Anlaysis in a Single Can-type Combustor through 3D Thermo-acoustic Analysis based on Helmholtz Solver

헬름홀츠 솔버 기반의 3차원 열음향해석을 통한 발전용 단일 캔 연소기에서의 공진 모드 분석

  • 정준우 (강릉원주대학교 기계공학과) ;
  • 김대식 (강릉원주대 기계공학과)
  • Received : 2024.03.05
  • Accepted : 2024.03.19
  • Published : 2024.03.31

Abstract

This study conducted a 3D thermo-acoustic analysis based on the helmholtz solver to analyze the major resonance modes causing combustion instability in a single-can combustor. The experimental investigations were carried out on a test rig designed by the Korea Institute of Machinery & Materials (KIMM) under various conditions of hydrogen co-firing and fuel staging. Through these experiments, two primary unstable frequencies were identified. To determine the resonance modes of these frequencies, a 3D thermo-acoustic analysis was conducted using temperature information from the test rig. The results confirmed that the unstable frequencies observed in the experiments were all longitudinal modes. Additionally, the mode shapes identified in the analysis facilitated a simplification of the exit geometry for the low-order network model, confirming that this did not significantly affect the fundamental resonance modes.

Keywords

Acknowledgement

이 논문은 2023년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구임(RS-2023-00270080, 수소터빈 연소기 시험평가 기술개발, 기여율 100%).

References

  1. J. Goldmer, Power to Gas: Hydrogen for power generation, GE Power, 2019.
  2. R. Magnusson and M. Andersson, Operation of SGT-600 (24MW) DLE gas turbine with over 60% H2 in natural gas, ASME Turbo Expo 2020, 2020, pp. GT2020~16332.
  3. K. Inoue, K. Miyamoto, S. Domen, I. Tamura, T. Kawakami, S. Tanimura, Development of hydrogen and natural gas co-firing gas turbine, Mitsubishi Heavy Industries Technical Review, Vol. 55, No. 2, 2018, pp. 1~6.
  4. D. Cecere, E. Giacomazzi, A. D. Nado, G. Calchetti, Gas turbine combustion technologies for hydrogen blends, Energies, Vol. 16, No. 19, 2023, pp. 6829.
  5. J. Betia, M. Talibi, S. Sadasivuni, R. Balachandra, Thermoacoustic instability considerations for high hydrogen combustion in lean premixed gas turbine combustors: A review, Hydrogen, Vol. 2, No. 1, 2021, pp. 33~57.
  6. T. Lieuwen, H. Torres, C. Johnson, B. T. Zinn, A mechanism of combustion instability in lean premixed gas turbine combustors, J. Eng. Gas Turbine Power, Vol. 123, No. 1, 2001, pp. 182~189.
  7. J. O'Connor, Understanding the role of flow dynamics in thermoacoustic combustion instability, Proc. Combust. Inst., Vol. 39, No. 4, 2023, pp. 4583~4610.
  8. G. A. Richards, D.L. Straub, Paasive control of combustion dynamics in stationary gas turbines, J. Propul. Power., Vol. 19, No. 5, 2003, pp. 795~810.
  9. A. H. Lefebvre, D. R. Ballal, Gas turbine combustion: Alternative fuels and emissions 3rd edition, CRC Press, 2010.
  10. J. Kim, T. John, S. Adhikari, D. Wu, B. Emerson, V. Acharya, M. Isono, T. Saito, T. Lieuwen, Experimental investigation of interactions between two closely spaced azimuthal modes in a multinozzle can combustor, J. Eng. Gas Turbine Power, Vol. 144, No. 10, 2022, pp. 10121.
  11. P. Kaufmann, W. Krebs, R. Valdes, U. Wever, 3D thermoacoustic properties of single can and multi can combustor configurations, ASME Turboexpo 2008, 2008, GT2008-50755.
  12. J. Kim, W. Gillman, T. John, S. Adhikari, D. Wu, B. Emerson, V. Acharya, T. Lieuwen, M. Isono and T. Saitoh, Experimental investigation of fuel staging effect on modal dynamic of thermoacoustic azimuthal instabilities in a multi-nozzle can combustor, ASME Turboexpo 2021, 2021, pp. GT2021~59098.
  13. S. Jella, M. Furi and V. Katsapis, Numerical analysis of high frequency transverse instabilities in a cantype combustor, ASME Turboexpo 2023, 2023, pp. GT2023~103298.
  14. T. Poinsot, Prediction and control of combustion instabilities in real engines, Proc. Combust. Inst., Vol. 36, No. 1, 2017, pp. 1~28.
  15. H. T. Luong, Y. Wang, H. S. Han and C. H. Sohn, Combined applications of analytic methods for detection of combustion instability triggering, Aerospace Science and Technology, Vol. 118, 2021, pp. 106994.
  16. Y. Wang, C. H. Cho, J. Du and C. H. Sohn, Effects of recess length on combustion instability in a model chamber with a gas-centered swirl coaxial injector, Aerospace Science and Technology, Vol. 130, 2022, pp. 107911.
  17. A. Dowling, S. Stow, Acoustic analysis of gas turbine combustors, J. Prop. Power, Vol. 19, No. 5, 2003, pp. 751~764.
  18. X. Han, J. Li and A. S. Morgans, Prediction of combustion instability limit cycle oscillations by combining flame describing function simulations with a thermoacoustic network model, Combust. Flame, Vol. 162, 2015, pp. 3632~3647.
  19. J. Son and D. Kim, Combustion instability modeling in a reverse-flow gas turbine combustor using a network model, J. Korean Soc. Combust., Vol. 26, No. 4, 2021, pp. 20~28.
  20. J. Lim and D. Kim, 3D acoustic field analysis in an annular combustor system under a cold flow condition, J. Korean Propul. Eng., Vol. 21, No. 6, 2017, pp. 49~56.
  21. S. Camporeale, B. Fortunato and G. Campa, A finite element method for three-dimensional analysis of thermoacoustic combustion instability, J. Eng. Gas Turines Power, Vol. 133, No. 1, 2011, pp. 011506.
  22. G. Campa and S. M. Camporeale, Prediction of the thermoacoustic combustion instabilities in practical annular combustor, J. Eng. Gas. Turbine Power., Vol. 136, No. 9, 2014, pp. 091504.
  23. COMSOL Acoustic module user's Guide.
  24. A. Selamet, Z. L. Ji and R. A. Kach, Wave reflections from duct terminations, The Journal of the Acoustical Society of America, Vol. 109, No. 4, 2001, pp. 1304~1311.