DOI QR코드

DOI QR Code

제주도 일대 습지에 서식하는 저서성 대형무척추동물의 군집 분포 특성

Spatial Distribution of Benthic Macroinvertebrate Assemblages in Wetlands of Jeju Island, Korea

  • 투고 : 2024.01.23
  • 심사 : 2024.02.27
  • 발행 : 2024.03.31

초록

습지는 생태적 중요성과 경제적 가치에도 불구하고 인간의 과도한 이용으로 인하여 교란받고 있을 뿐만 아니라 유수생태계인 하천에 비하여 습지 연구는 상대적으로 적다. 본 연구는 아열대 기후의 제주도에 분포하는 중·소형 습지 50개소를 대상으로 저서성 대형무척추동물 군집 특성과 주요 종의 분포 특성을 알아보기 위하여 2021년 현장조사를 실시하였다, 현장조사는 국립생태원의 "내륙습지 조사지침(2020)"에 따라 수행되었다. 조사기간 동안 출현한 저서성 대형무척추동물은 총 3문 5강 19목 53과 133종이었다. 습지별 출현종수는 4~31종의 범위였으며 평균 17.5종이 출현하였다. 포식성 곤충인 잠자리목과 노린재목, 딱정벌레목의 세 분류군은 출현종수와 개체밀도가 각각 전체의 67.7%와 68.2%를 차지하였는데, 특히 딱정벌레목의 구성비가 가장 높았다. 한편, 국가습지 유형분류체계에 따른 습지 유형별 출현종수와 개체밀도는 통계적으로 유의미한 차이가 없었다. 본 연구를 통하여 멸종위기 야생생물은 기수갈고둥과 물장군, 물방개의 총 3종이 확인되었으며 큰무늬왕잠자리를 비롯하여 제주도 내에만 국지적으로 분포하는 다수의 종이 기록되었다. 전체 대상 습지는 저서성 대형무척추동물 군집의 유사성에 따라 5개의 그룹으로 세분되었으며 각 그룹은 습지면적과 세립질 입자의 구성비, 습지 장축 길이, 수생식물 구성비의 항목에서 통계적으로 유의미한 차이를 보였다. 지표종분석(ISA) 결과에서 총 19종의 지표종이 선정되었는데, 노란실잠자리는 지표값이 63%로 가장 높았으며 그 다음으로 자색물방개와 깔따구류의 순이었다. 습지 환경과 생물 자료를 지속적으로 축적한다면 지표종의 환경변화에 따른 반응을 보다 객관적으로 제시할 수 있으며 습지생태계의 현재 상태를 평가하고 관리하기 위한 생물학적 지표 개발에 적용이 가능할 것이다. 본 연구 결과는 중·소형 습지에 대한 저서성 대형무척추동물의 생물다양성과 서식환경에 대한 정보를 제공하고 향후 습지 보전과 복원을 위한 기초자료로 활용되기를 기대한다.

Most wetlands worldwide have suffered from extensive human exploitation. Unfortunately they have been less explored compared to river and lake ecosystems despite their ecological importance and economic values. This is the same case in Korea. This study was aimed to estimate the assemblage attributes and distribution characteristics of benthic macroinvertebrates for fifty wetlands distributed throughout subtropical Jeju Island in 2021. A total of 133 taxa were identified during survey periods belonging to 53 families, 19 orders, 5 classes and 3 phyla. Taxa richness ranged from 4 to 31 taxa per wetland with an average of 17.5 taxa. Taxa richness and abundance of predatory insect groups such as Odonata, Hemiptera and Coleoptera respectively accounted for 67.7% and 68.2% of the total. Among them Coleoptera were the most diverse and abundant. Taxa richness and abundance did not significantly differ from each wetland type classified in accordance with the National Wetland Classification System. There were three endangered species (Clithon retropictum, Lethocerus deyrolli and Cybister (Cybister) chinensis) and several restrictively distributed species only in Jeju Island. Cluster analysis based on the similarity in the benthic macroinvertebrate composition largely classified 50 wetlands into two major clusters: small wetlands located in lowland areas and medium-sized wetlands in middle mountainous regions. All cluster groups displayed significant differences in wetland area, long axis, percentage of fine particles and macrophyte composition ratio. Indicator Species Analysis selected 19 important indicators with the highest indicator value of Ceriagrion melanurum at 63%, followed by Noterus japonicus (59%) and Polypylis hemisphaerula (58%). Our results are expected to provide fundamental information on the biodiversity and habitat environments for benthic macroinvertebrates in wetland ecosystems, consequently helping to establish conservation and restoration plans for small wetlands relatively vulnerable to human disturbance.

키워드

과제정보

본 연구는 환경부 국립생태원에서 수행한 "내륙습지 기초조사(NIE-A-2024-18)"에 의해 이루어진 자료를 포함한 것으로 이에 감사드립니다.

참고문헌

  1. Allan, J.D. and M.M. Castillo. 2007. Sream Ecology: Structure and Function of Running Waters. Second edition. Springer Science & Business Media, Dordrecht, The Netherlands.
  2. Attrill, J.J., J.A. Strong and A.A. Rowden. 2000. Are macroinvertebrate communities influenced by seagrass structural complexity? Ecography 23: 114-121.
  3. Bae, Y.J., S.I. Jo, D.H. Hoang, H.G. Lee and K.B. Na. 2004. Biodiversity and community composition of benthic macroinvertebrates from Upo wetlands in Korea. Korean Journal of Environment and Ecology 18: 75-91.
  4. Beyene, A., T. Addis, D. Kifle, W. Legesse, H. Kloos and L. Triest. 2009. Comparative study of diatoms and macroinvertebrates as indicators of severe water pollution: Case study of the Kebena and Akaki rivers in Addis Ababa, Ethiopia. Ecological Indicators 9: 381-392.
  5. Bogut, I., J. Vidakovic, G. Palijan and D. Cerba. 2007. Benthic macroinvertbrates associated with four species of macrophytes. Biologia 62: 600-606.
  6. Brraich, O.S. and R. Kaur. 2017. Temporal composition and distribution of benthic macroinvertebrates in wetlands. Current Science 112: 116-125.
  7. Choi, J.Y., S.K. Kim, J.C. Kim and S.J. Kwon. 2020. Habitat preferences and trophic position of Brachydiplax chalybea flavovittata Ris, 1911 (Insecta: Odonata) larvae in Youngsan River wetlands of South Korea. Insects 11(5): 273. https://doi.org/10.3390/insects11050273
  8. Chung, H.Y., C.M. Yeom, J.H. Kim, S.Y. Park, Y.W. Lee, G.A. Pyo and S.H. Kim. 2020. Species diversity and community characteristics of benthic macroinvertebrates from irrigation ponds in the western CCZ area, Korea. Korean Journal of Ecology and Environment 53(2): 173-184.
  9. Cooper, M.J., D.G. Uzarski, T.M. Burton and R.R. Rediske. 2006. Macroinvertebrate community composition relative to chemical/physical variables, land use and cover, and vegetation types within a Lake Michigan drowned river mouth wetland. Aquatic Ecosystem Health and Management 9: 463-479.
  10. Cummins, K.W. 1962. An evaluation of some techniques for the collection and analysis of benthic samples with special emphasis on lotic waters. The American Midland Naturalist 67(2): 477-504.
  11. Dalu, T., R.N. Cuthbert, M.J. Methi, F. Dondofema, L.D. Chari and R.J. Wasserman. 2022. Drivers of aquatic macroinvertebrate communities in a Ramsar declared wetland system. Science of The Total Environment 818: 151683. https://doi.org/10.1016/j.scitotenv.2021.151683
  12. Davis, J., P. Horwitz, R. Norris, B. Chessman, M. McGuire and B. Sommer. 2006. Are river bioassessment methods using macroinvertebrataes applicable to wetlands? Hydrobiologia 572: 115-128.
  13. Diaz, R.J., M. Solan and R.M. Valente. 2004. A review of approaches for classifying benthic habitats and evaluating habitat quality. Journal of Environmental Management 73: 165-181.
  14. Dufrene, M. and P. Legendre. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monograph 67: 345-366.
  15. FNM. 2021. Butterflies of Jeju Island. Forklore & Natural Museum Jeju Special Self-Governing Province. Jeju, Korea.
  16. Gleason, J.E., J.Y. Bortolotti and R.C. Rooney. 2018. Wetland microhabitats support distinct communities of aquatic macroinvertebrates. Journal of Freshwater Ecology 33: 73-82.
  17. Hall, D.L., M.R. Willig, D.L. Moorhead, R.W. Sites, E.B. Fish, and T.R. Mollhagen. 2004. Aquatic macroinvertebrate diversity of playa wetlands: the role of landscape and island biogeographic characteristics. Wetlands 24: 77-91.
  18. Han, J.S., C.H. An, J.C. Lim, K.J. Cho and H.G. Lee. 2022. Analysis of benthic macroinvertebratae fauna and habitat environment of Muljangori-oreum wetland in Jeju Island. Korean Journal of Environmental Biology 40(4): 363-373.
  19. Han, S.P., I.C. Hwang and S.J. Kwon. 2021. Studies on distribution and ecology of Clithon retropictus(Martens, 1879) in South Korea. Journal of Wetlands Research 23(4): 317-326.
  20. Heino, J. 2000. Lentic macroinvertebrate assemblage structure along gradients in spatial heterogeneity, habitat size and water chemistry. Hydrobiologia 418: 229-242.
  21. Hong, S.J. and S.W. Cheong. 2020. A study on the community characteristics and changes of benthic macroinvertebrates in the conservation area of the Shinbulsan wetland. Journal of Environmental Science International 29: 1079-1088.
  22. Jeong, J.Y., M.K. Sang, J.E. Park, D.K. Song, C.E. Hong, Y.T. Kim, H.J. Sin, H.J. Hwang, S.M. Jung, S.Y. Park, S.W. Kang, J.S. Lee, Y.S. Han, H.S. Park, Y.S. Lee and W.J. Kim. 2021. Molecular phylogenetic study of Clithon retropictus using metallothionein gene. Korean Journal of Malacology 37(2): 69-74.
  23. Jeong, S.B., D.S. Kim, H.S. Jeon, K.S. Yang and W.T. Kim. 2010a. Species richness of aquatic insects in wetlands along the altitudinal gradient in Jeju, Korea: test of Rapoport's rule. Korean Journal of Applied Entomology 49: 175-185.
  24. Jeong, S.B., H.S. Oh, H.S. Jeon, K.S. Yang and W.T. Kim. 2010b. Aquatic insects fauna and characteristics of distribution on Jeju Island wetlands. Journal of Wetlands Research 12(2):35-46.
  25. Jiang, X.M., J. Xiong, J.W. Qiu, J.M. Wu, J.W. Wang and Z.C. Xie. 2010. Structure of macroinvertebrate communities in relation to environmental variables in a subtropical Asian river system. International Review of Hydrobiology 95: 42-57.
  26. JRMA. 2011. Regional Climate Change Report. Jeju Regional Meteorological Administration. Jeju, Korea.
  27. Jun, Y.C., D.H. Won, S.H. Lee, D.S. Kong and S.J. Hwang. 2012. A multimetric benthic macroinvertebrate index for the assessment of stream biotic integrity in Korea. International Journal of Environmental Research and Public Health 9: 3599-3628.
  28. Jun, Y.C., N.Y. Kim, S.H. Kim, Y.S. Park, D.S. Kong and S.J. Hwang. 2016. Spatial distribution of benthic macroinvertebrate assemblages in relation to environmental variables in Korean nationwide streams. Water 8: 27. https://doi.org/10.3390/w8010027
  29. Jung, K.S. 2016. A distributional study and pictorial key of the Odonata (Insecta) from Korea. Ph D. dissertation, Andong University. 185pp.
  30. Jung, M.H., H.J. Cho, J.H. Yun and H.Y. Lee. 2014. Epilithic diatom communities in streams of Jeju Island. Korean Journal of Environmental Biology 32: 16-25.
  31. Jung, S.W., Y.J. Park, S.A. Ham, M.C. Kim, H.S. Oh and Y.J. Bae. 2011. Diversity and species composition of benthic macroinvertebrates in Jeju Island. Entomological Research Bulletin 27: 59-69.
  32. Kang, D.H., E.Y. Yim and M.O. Moon. 2015. Flora of aquatic and wetland habitats on Jeju Island. Korean Journal of Plant Taxonomy 45(1): 96-107.
  33. Kashian, D.R. and T.M. Burton. 2000. A comparison of macroinvertebrates of two Great Lakes coastal wetlands: testing potential metrics for an index of ecological integrity. Journal of Great Lakes Research 26: 460-481.
  34. Kim, T., J. Jeong, S. Moon, H. Yang and B. Yang. 2013. Introduction to national mid-term fundamental plan for wetlands conservation and management. Journal of Wetlands Research 15: 519-527.
  35. Kingsford, R.T., A. Basset and L. Jackson. 2016. Wetlands: conservation's poor cousins. Aquatic Conservation: Marine and Freshwater Ecosystems 26: 892-916.
  36. Lawton, J.H., M. MacGarvin and P.A. Heads. 1987. Effects of altitude on the abundance and species richness of insect herbivores on bracken. Journal of Animal Ecology 56: 147-160.
  37. Lee, S.D., M.J. Kim and J.S. Kim. 2018. Ecological characteristic of Clithon retropictus inhabitating in Yeoncho River in southern coastal area. Korean Journal of Environment and Ecology 32(6): 591-602.
  38. Maltchik, L., C. Stenert, C.B. Kotzian and M.M. Pires. 2010. Responses of odonate communities to environmental factors in southern Brazil wetlands. Journal of the Kansas Entomological Society 83: 208-220.
  39. Margalef, R. 1958. Temporal succession and spatial heterogeneity in phytoplankton. pp. 323-349. In: Perspectives in Marine Biology (Buzzati-Traverso, A.A. ed.). University of California Press, Berkeley.
  40. McCune, B. and J.B. Grace. 2002. Analysis of ecological communities. MjM Software Design, Gleneden Beach, Oregon, USA.
  41. McCune, B. and M.J. Mefford. 1999. PC-ORD. Multivariate Analysis of Ecological Data, Vers. 4. User's Guide. MjM Software Design, Gleneden Beach, Oregon, USA.
  42. McNaughton, S.J. 1967. Relationships among functional properties of California Grassland. Nature 216: 168-169.
  43. Mereta, S.T., P. Boets, A.A. Bayih, A. Malu, Z. Ephrem, A. Sisay, H. Endale, M. Yitbarek, A. Jemal, L. De Meester and P.L.M. Goethals. 2012. Analysis of environmental factors determining the abundance and diversity of macroinvertebrate taxa in natural wetlands of southwest Ethiopia. Ecological Informatics 7: 52-61.
  44. Merz, J.R. and L.K. Ochikubo Chan. 2005. Effects of gravel augmentation on macroinvertebrate assemblages in a regulated California river. River Research and Applications 21: 61-74.
  45. Mielke, P.W., Jr., K.J. Berry and E.S. Johnson. 1976. Multiresponse permutation procedures for a priori classifications. Communications in Statistics A5: 1409-1424.
  46. Min, J.K., H. Lee and D. Kong. 2022. Development of a benthic macroinvertebrate predictive model based on the physical and chemical variables of rivers in the Republic of Korea. Jouranl of Freshwater Ecology 37: 425-453.
  47. MOE. 2019. The distribution map of Clithon retropictum (Martens, 1879). - Kyeongnam Region: Changwon, Goseong, Sacheon, Tongyoung and Geoje -. The Ministry of Environment. Sejong, Korea. 34pp.
  48. MOE. 2022. Designation Status of Wetland Protection Area in Korea (December 2022). http://www.me.go.kr. The Ministry of Environment.(accessed 06/30/2023).
  49. MOE/NIER. 2008. Intensive Survey on the Wetland Protected Areas. The Ministry of Environment/National Institute of Environmental Research. Incheon, Korea. pp. 129-139.
  50. MOE/NIER. 2021. Stream/River Ecosystem Survey and Health Assessment. - Youngsan River and Seomjin River -. The Ministry of Environment/National Institute of Environmental Research. Incheon, Korea.
  51. Nelson, S.M. and D.M. Lieberman. 2002. The influence of flow and other environmental factors on benthic invertebrates in the Sacramento River, USA. Hydrobiologia 489: 117-129.
  52. NIE. 2020. Survey Guidelines For Inland Wetlands. National Institute of Ecology, Changnyeong, Korea.
  53. NIE. 2022. Basic Survey on Inland Wetlands('22). National Institute of Ecology, Seocheon, Korea.
  54. Noseworthy, R.G., H.J. Lee and K.S. Choi. 2013. The occurrence of Clithon retropictus(v. Martens, 1879) (Gastropoda: Neritidae) in an unusual habitat, northern Jeju Island, Republic of Korea. Ocean Science Journal 48(3): 259-262.
  55. Noseworthy, R.G., M.R. Mondol, S.J. Ju and K.S. Choi. 2012. The occurrence of Clithon retropictus (von Martens in Kobelt, 1879, Gastropoda: Neritidae) in Jeju Island, Republic of Korea. Korean Journal of Malacology 28(2): 81-90.
  56. Oertli, B., D.A. Joye, E. Castella, R. Juge, D. Cambin and J. Lachavanne. 2002. Does size matter? The relationship between pond area and biodiversity. Biological Conservation 104: 59-70.
  57. Oh, S.J., K.L. Zhin and S.C. Koh. 2009. Studies on flora of wetlands on Jeju City for application as nature exploration sites. Journal of the Environmental Sciences 18(4): 411-422.
  58. Park, S.H., J.H. Kim, S.H. Baek, H.S. Choi, D.W. Kim, E.J. Ko and H.W. Kim. 2020. Characteristics of fish assemblage by reservoir size in Yeongsan.Seomjin River watershed in Korea. Korean Journal of Ecology and Environment 53: 229-240.
  59. Petersen, W.T. and J.E. Keister. 2003. Interannual variability in copepod community composition at a coastal station in the northern California Current: a multivariate approach. Deep Sea Research 50: 2499-2519.
  60. Pielou, E.C. 1975. Ecological diversity. John Wiley and Sons, New York.
  61. Reis, V., V. Hermoso, S.K. Hamilton, D. Ward, E. Fluet-Chouinard, B. Lehner and S. Linke. 2017. A global assessment of inland wetland conservation status. BioScience 67: 523-533.
  62. Rolon, A.S. and L. Maltchik. 2006. Environmental factors as predictors of aquatic macrophyte richness and composition in wetlands of southern Brazil. Hydrobiologia 556: 221-231.
  63. Rosenberg, D.M. and V.H. Resh. 1993. Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman and Hall, London and New York.
  64. Sanders, N.J. 2002. Elevational gradients in ant species richness: area, geometry, and Rapoport's rule. Ecography 25: 25-32.
  65. Shannon, C.E. and W. Weaver. 1949. The mathematical theory of communication. University of Illinois Press, Urbana.
  66. Sharma, R.C. and J.S. Rawat. 2009. Monitoring of aquatic macroinvertebrates as bioindicator for assessing the health of wetlands: a case study in the Central Hymalayas, India. Ecological Indicators 9: 118-128.
  67. Shine, C. and C. de Klemm. 1999. Wetlands, Water and the Law: Using Law ti Advance Wetland Conservation and Wise Use. IUCN, Gland.
  68. Son, J.K., N.C. Kim, M.H. Kim and B.H. Kang. 2012. Community characteristics of benthic macroinvertebrates according to growth environment at rural palustrine wetland. Journal of the Korean Society of Environmental Restoration Technology 15(5): 129-144.
  69. Stenert, C. and L. Maltchik. 2007. Influence of area, altitude and hydroperiod on macroinvertebrate communities in southern Brazil wetlands. Marine and Freshwater Research 58: 993-1001.
  70. Stenert, C., R.C. Bacca, C.C. Mostardeiro and L. Maltchik. 2008. Environmental predictors of macroinvertebrate communities in coastal wetlands of southern Brazil. Marine and Freshwater Research 59: 540-548.
  71. Stewart, N.A. and T.A. Schriever. 2023. Local environmental conditions influence species replacement in Great Lakes interdunal wetland macroinvertebrate communities. Freshwater Biology 68: 46-60.
  72. Tonn, W.M. and J.J. Magnuson. 1982. Patterns in the species composition and richness of fish assemblages in northern Wisconsin lakes. Ecology 63: 1149-1166.
  73. Van den Berg, M.S., H. Coops, R. Noordhuis, J. van Schie and J. Simons. 1997. Macroinvertebrate communities in relation to submerged vegetation in two Chara-dominated lakes. Hydrobiologia 342/343: 143-150.
  74. Vannote, R.L., G.W. Minshall, K.W. Cummins, J.R. Sedell and C.E. Cushing. 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130-137.
  75. Wallace, J.B. and J.R. Webster. 1996. The role of macroinvertebrates in stream ecosystem function. Annual Review of Entomology 41: 115-139.
  76. Weisberg, S.B., J.A. Ranasinghe, D.D. Dauer, L.C. Schnaffer, R.J. Diaz and J.B. Frithsen. 1997. An estuarine benthic index of biotic integrity (B-IBI) for Chesapeake Bay. Estuaries 20: 149-158.
  77. Williams, D.D. and B.W. Feltmate. 1992. Aquatic Insects. CAB International, Wallingford, Oxon, UK.