DOI QR코드

DOI QR Code

A review on the application of plastic waste in the reinforced concrete structures

  • K. Senthil (Department of Civil Engineering, Dr. B R Ambedkar National Institute of Technology) ;
  • Suresh Jakhar (Department of Civil Engineering, Dr. B R Ambedkar National Institute of Technology) ;
  • Manish Khanna (Department of Civil Engineering, Dr. B R Ambedkar National Institute of Technology) ;
  • Kavita Rani (Department of Civil Engineering, Dr. B R Ambedkar National Institute of Technology)
  • 투고 : 2022.05.16
  • 심사 : 2023.10.05
  • 발행 : 2024.04.25

초록

Concrete is the most significant material in the construction industry which is required to construct several facilities like roads, buildings, and bridges etc. which leads to the economic development of a country. But now days, in view of sustainable development and environmental problems, plastic waste management is one of the major environmental issues due to its non-biodegradable nature which allows it to stay in the landfills until they are cleaned up. To overcome all these concerns, plastic waste may be used as a substitute of natural fine and coarse aggregate in concrete and a valuable solution to utilize the plastic items which causes several problems. In order to, present study is focused on the affecting properties of concrete as workability, compressive strength, and tensile strength of concrete with using plastic waste and without using plastic waste. Based on the detailed literature, it was observed that the plastic waste is not affecting the quality and consistency of concrete. However, as the number of PVC particles in the mixture increased, the drying shrinkage values decreased and the inclusion of plastic flakes can mitigate drying shrinkage cracking which leads the higher durability of concrete. Based on the comprehensive literature, it was also observed that the plastic aggregate found to be suitable for low and medium strength concrete. However, the investigation on the application of plastic aggregate in the high strength concrete is found limited. It was concluded that the optimum percentage of the plastic aggregate was found about 20%.

키워드

참고문헌

  1. Abdel-Fattah, H. and El-Hawary, M.M. (1999), "Flexural behavior of polymer concrete", Constr. Build. Mater., 13(5), 253-262. https://doi.org/10.1016/S0950-0618(99)00030-6.
  2. Adejumo, T.W. and Jibrin, S. (2007), "Strength characteristics of concrete with plastic granules as partial replacement for sand", Department of Civil Engineering, School of Engineering and Engineering Technology, Federal University of Technology, Minna, Nigeria.
  3. Ali, K., Qureshi, M.I., Saleem, S. and Khan, S.U. (2021), "Effect of waste electronic plastic and silica fume on mechanical properties and thermal performance of concrete", Constr. Build. Mater., 285, 122952. https://doi.org/10.1016/j.conbuildmat.2021.122952.
  4. Almeshal, I., Tayeh, B.A., Alyousef, R., Alabduljabbar, H. and Mohamed, A.M. (2020), "Eco-friendly concrete containing recycled plastic as partial replacement for sand", J. Mater. Res. Technol., 9(3), 4631-4643. https://doi.org/10.1016/j.jmrt.2020.02.090.
  5. Almohana, A.I., Abdulwahid, M.Y., Galobardes, I., Mushtaq, J. and Almojil, S.F. (2022), "Producing sustainable concrete with plastic waste: A review", Environ. Chall., 9, 100626. https://doi.org/10.1016/j.envc.2022.100626.
  6. Arivalagan, S. (2016), "Experimental investigation on partial replacement of waste plastic in concrete", Int. J. Eng. Sci. Res. Technol., 5(11), 443-449.
  7. Awodiji, C.T.G., Sule, S. and Oguguo, C.V. (2021), "Comparative study on the strength properties of paving blocks produced from municipal plastic waste", Niger. J. Technol., 40(5), 762-770.
  8. Azhdarpour, A.M., Nikoudel, M.R. and Taheri, M. (2016), "The effect of using polyethylene terephthalate particles on physical and strength-related properties of concrete; A laboratory evaluation", Constr. Build. Mater., 109, 55-62. https://doi.org/10.1016/j.conbuildmat.2016.01.056.
  9. Bag, R., Agarwal, A. and Praneeth, R. (2020), "Recycling of domestic plastic waste bags as fine aggregate in concrete", IOP Conf. Ser.: Mater. Sci. Eng., 936(1), 012009. https://doi.org/10.1088/1757-899X/936/1/012009.
  10. Balasubramanian, B., Krishna, G.V.T.G., Saraswathy, V. and Srinivasan, K. (2021), "Experimental investigation on concrete partially replaced with waste glass powder and waste E-plastic", Constr. Build. Mater., 278, 122400. https://doi.org/10.1016/j.conbuildmat.2021.122400.
  11. Balde, C.P., Wang, F., Kuehr, R. and Huisman, J. (2014), "The global e-waste monitor - 2014", United Nations University, IAS - SCYCLE, Bonn, Germany.
  12. Bulut, H.A. and Sahin, R. (2017), "A study on mechanical properties of polymer concrete containing electronic plastic waste", Compos. Struct., 178, 50-62. https://doi.org/10.1016/j.compstruct.2017.06.058.
  13. Chaudhary, M., Srivastava, V. and Agarwal, V.C. (2014), "Effect of waste low density polyethylene on mechanical properties of concrete", J. Acad. Indust. Res., 3(3), 123-126.
  14. Chavan, M. (2013), "Use of plastic waste in flexible pavements", Int. J. Appl. Innov. Eng. Manag., 2(4), 540-552.
  15. Chen, C.C., Jaffe, N., Koppitz, M., Weimer, W. and Polocoser, A. (2015), "Concrete mixture with plastic as fine aggregate replacement", Int. J. Adv. Mech. Civil Eng., 2(4), 49-53.
  16. Chodankar, S.K. and Savoikar, P.P. (2021), "An overview of strength and durability aspects of concrete using PET fibres", Paper No-105; Department of Civil Engineering, Goa Engineering College, Goa, India.
  17. Choi, C.K. and Cheung, S.H. (1996), "Tension stiffening model for planar reinforced concrete members", Comput. Struct., 59(1), 179-190. https://doi.org/10.1016/0045-7949(95)00146-8.
  18. Elango, A.A.K.A. (2018), "Study on partial replacement of plastic waste", Int. J. Current Eng. Sci. Res., 5,
  19. Foti, D. (2013), "Use of recycled waste pet bottles fibers for the reinforcement of concrete", Compos. Struct., 96, 396-404. https://doi.org/10.1016/j.compstruct.2012.09.019.
  20. Geyer, R., Jambeck, J.R. and Law, K.L. (2017), "Production, use, and fate of all plastics ever made", CA 93106; Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, CA, USA.
  21. Hama, S.M. and Hilal, N.N. (2019), "Containing plastic aggregate", Infect. Control Clinic. Pract., 2019, 85-114. http://doi.org/10.1016/B978-0-08-102676-2.00005-0.
  22. Harini, B. and Ramana, K.V. (2015), "Use of recycled plastic waste as partial replacement for fine aggregate in concrete", Int. J. Innov. Res. Sci. Eng. Technol., 4(9), 8596-8603. https://doi.org/10.15680/IJIRSET.2015.0409106.
  23. Islam, J. and Dipta, I.A. (2018), "Investigation of recycled poly-ethylene terephthalate (PET) as partial replacement of coarse aggregate in concrete", J. Civil Eng., 46(1), 11-20.
  24. Islam, M.J., Meherier, M.S. and Islam, A.K.M.R. (2016), "Effects of waste PET as coarse aggregate on the fresh and harden properties of concrete", Constr. Build. Mater., 125, 946-951. https://doi.org/10.1016/j.conbuildmat.2016.08.128.
  25. Kalpana, M., Vijayan, D.S. and Benin, S.R. (2020), "Performance study about ductility behaviour in electronic waste concrete", Mater. Today: Proc., 33, 1015-1020. https://doi.org/10.1016/j.matpr.2020.07.049.
  26. Karthikeyan, M., Balamurali, K., Barath Kumar, V., Manoj, P. and Jarnarthanan, R. (2019), "Utilization of waste plastic in concrete", Int. J. Sci. Eng. Res., 6(4), 1400-1405.
  27. Khajuria, A. and Sharma, P. (2019), "Use of plastic aggregates in concrete", Int. J. Innov. Technol. Explor. Eng., 9(1), 4406-4412. https://doi.org/10.35940/ijitee.A5088.119119.
  28. Khalid, F.S., Irwan, J.M., Ibrahim, M.H.W., Othman, N. and Shahidan, S. (2018), "Performance of plastic wastes in fiber-reinforced concrete beams", Constr. Build. Mater., 183, 451-464. https://doi.org/10.1016/j.conbuildmat.2018.06.122.
  29. Khan, Z., Malhotra, E.S., Ranjit, M., Punjab, S. and Pathankot, T.K. (2019), "Study of polyethylene terephtalate PET bottles as fiber in concrete with partial replacement of cement with silica", Global J. Eng. Sci. Res., 6(5), 21-32.
  30. Lakshmi, R. and Nagan, S. (2010), "Studies on concrete containing E plastic waste", Int. J. Environ. Sci., 1(3), 270-281.
  31. Lebreton, L. and Andrady, A. (2019), "Future scenarios of global plastic waste generation and disposal", Palgrave Commun., 5(1), 1-11. https://doi.org/10.1057/s41599-018-0212-7.
  32. Mahesh, M., Venkat, B., Rao, N. and Satya Sri, C.H. (2016), "Re-use of polyethylene plastic waste in concrete", Int. J. Eng. Develop. Res., 4(4), 693-702.
  33. Malagavelli, V. (2011), "Strength characteristics of concrete using solid waste an experimental investigation", Int. J. Earth Sci. Eng., 4(6), 937-940.
  34. Noh, H.C. and Choi, C.K. (2006), "Ultimate behavior of reinforced concrete cooling tower: Evaluation and comparison of design guidelines", Struct. Eng. Mech., 22(2), 223-240. https://doi.org/10.12989/sem.2006.22.2.223.
  35. Pesic, N., Zivanovic, S., Garcia, R. and Papastergiou, P. (2016), "Mechanical properties of concrete reinforced with recycled HDPE plastic fibres", Constr. Build. Mater., 115, 362-370. https://doi.org/10.1016/j.conbuildmat.2016.04.050.
  36. Prahallada, M.C. and Prakash, K.B. (2013), "Effect of different aspect ratio of waste plastic fibres on the properties of fibre reinforced concrete-an experimental investigation", Int. J. Adv. Res. IT Eng., 2(2), 1-13.
  37. Raghatate, A.M. (2012), "Use of plastic in a concrete to improve its properties", Int. J. Adv. Eng. Res., 1(3), 109-111.
  38. Rahmani, E., Dehestani, M., Beygi, M.H.A., Allahyari, H. and Nikbin, I.M. (2013), "On the mechanical properties of concrete containing waste PET particles", Constr. Build. Mater., 47, 1302-1308. https://doi.org/10.1016/j.conbuildmat.2013.06.041.
  39. Rebeiz, K.S., Fowler, D.W. and Paul, D.R. (1993), "Overview of polymer composites using recycled PET", Polym. Polym. Compos., 5(2), 237-248. https://doi.org/10.1177/147823919300100104.
  40. Rebeiz, K.S., Serhal, S.P. and Fowler, D.W. (1994), "Structural behavior of polymer concrete beams using recycled plastic", J. Mater. Civil Eng., 6(1), 150-165. https://doi.org/10.1061/(asce)0899-1561(1994)6:1(150).
  41. Saikia, N. and De Brito, J. (2014), "Mechanical properties and abrasion behaviour of concrete containing shredded PET bottle waste as a partial substitution of natural aggregate", Constr. Build. Mater., 52, 236-244. https://doi.org/10.1016/j.conbuildmat.2013.11.049.
  42. Sambhaji, P.P. (2016), "Use of waste plastic in concrete mixture as aggregate replacement", Waste Manag., 3(12), 115-118. https://doi.org/10.1016/j.wasman.2007.08.023.
  43. Sangal, G.S. (2018), "Study the effect of plastic waste on strength of concrete", Int. J. Adv. Res. Develop., 3(7), 36-39.
  44. Santhanam, N. and Anbuarasu, G. (2020), "Experimental study on high strength concrete (M60) with reused E-waste plastics", Mater. Today: Proc., 22, 919-925. https://doi.org/10.1016/j.matpr.2019.11.107.
  45. Sarwe, K. (2014), "Study of strength proporty of concrete using waste plastics and steel fiber", Int. J. Eng. Sci. Res., 3(5), 9-11.
  46. Saxena, R., Gupta, T., Sharma, R.K., Chaudhary, S. and Jain, A. (2020), "Assessment of mechanical and durability properties of concrete containing PET waste", Sci. Iran., 27(1), 1-9. https://doi.org/10.24200/sci.2018.20334.
  47. Sharma, R. and Pal, P. (2002), "Journal of cleaner production", J. Clean. Prod., 10(4), 401. https://doi.org/10.1016/s0959-6526(02)00002-1.
  48. Siddique, R., Khatib, J. and Kaur, I. (2008), "Use of recycled plastic in concrete: A review", Waste Manag., 28(10), 1835-1852. https://doi.org/10.1016/j.wasman.2007.09.011.
  49. Silva, R.V, De Brito, J. and Saikia, N. (2013), "Cement & concrete composites influence of curing conditions on the durability-related performance of concrete made with selected plastic waste aggregates", Cement Concrete Compos., 35(1), 23-31. https://doi.org/10.1016/j.cemconcomp.2012.08.017.
  50. Subramani, T. and Pugal, V.K. (2015), "Experimental study on plastic waste as a coarse aggregate for structural concrete", Int. J. Appl. Innov. Eng. Manag., 4(5), 144-152. https://doi.org/ISSN 2319-4847.
  51. Sudharsan, A. and Balamurugan, G. (2017), "Experimental investigation on recycle plastic in concrete", Int. J. Innov. Res. Sci. Eng. Technol., 6(5), 8310-8315. https://doi.org/10.15680/IJIRSET.2017.0605172.
  52. Syed, M.S. (2018), "To study the use of plastic waste (Plastic chips) as partial replacement of coarse aggregate on the concrete- A Review", Int. J. Res. Appl. Sci. Eng. Technol., 6(4), 3675-3677. https://doi.org/10.22214/ijraset.2018.4613.
  53. Tafheem, Z., Islam Rakib, R., Reduanul Alam, S. and Mashfiqul Islam, M. (2018), "Experimental investigation on the properties of concrete containing post-consumer plastic waste as coarse aggregate replacement", J. Mater. Eng. Struct., 5(3), 23-31.
  54. Taner Yildirim, S. and Pelin Duygun, N. (2017), "Mechanical and physical performance of concrete including waste electrical cable rubber", IOP Conf. Ser.: Mater. Sci. Eng., 245(2), 022054. https://doi.org/10.1088/1757-899X/245/2/022054.
  55. Thorneycroft, J., Orr, J., Savoikar, P. and Ball, R.J. (2018), "Performance of structural concrete with recycled plastic waste as a partial replacement for sand", Constr. Build. Mater., 161, 63-69. https://doi.org/10.1016/j.conbuildmat.2017.11.127.
  56. Ullah Khan, S. and Ayub, T. (2020), "Flexure and shear behaviour of self-compacting reinforced concrete beams with polyethylene terephthalate fibres and strips", Struct., 25, 200-211. https://doi.org/10.1016/j.istruc.2020.02.023.
  57. Ullah, Z., Qureshi, M.I., Ahmad, A., Khan, S.U. and Javaid, M.F. (2021), "An experimental study on the mechanical and durability properties assessment of E-waste concrete", J. Build. Eng., 38(1), 102177. https://doi.org/10.1016/j.jobe.2021.102177.
  58. Umasabor, R.I. and Daniel, S.C. (2020), "The effect of using polyethylene terephthalate as an additive on the flexural and compressive strength of concrete", Heliyon, 6(8), e04700. https://doi.org/10.1016/j.heliyon.2020.e04700.
  59. Vanitha, S., Natarajan, V. and Praba, M. (2015), "Utilisation of waste plastics as a partial replacement of coarse aggregate in concrete blocks", Indian J. Sci. Technol., 8(12), 1. https://doi.org/10.17485/ijst/2015/v8i12/54462.
  60. Won, J., Jang, C., Lee, S., Lee, S. and Kim, H. (2010), "Long-term performance of recycled PET fibre-reinforced cement composites", Constr. Build. Mater., 24(5), 660-665. https://doi.org/10.1016/j.conbuildmat.2009.11.003.