DOI QR코드

DOI QR Code

A simplified framework for estimation of deformation pattern in deep excavations

  • Received : 2023.03.14
  • Accepted : 2024.03.08
  • Published : 2024.04.10

Abstract

To stabilize the excavations in urban area, soil anchorage is among the very common methods in geotechnical engineering. A more efficient deformation analysis can potentially lead to cost-effective and safer designs. To this end, a total of 116 three-dimensional (3D) finite element (FE) models of a deep excavation supported by tie-back wall system were analyzed in this study. An initial validation was conducted through examination of the results against the Texas A&M excavation cases. After the validation step, an extensive parametric study was carried out to cover significant design parameters of tie-back wall system in deep excavations. The numerical results indicated that the maximum horizontal displacement values of the wall (δhm) and maximum surface settlement (δvm) increase by an increase in the value of ground anchors inclination relative to the horizon. Additionally, a change in the wall embedment depth was found to be contributing more to δvm than to δhm. Based on the 3D FE analysis results, two simple equations are proposed to estimate excavation deformations for different scenarios in which the geometric configuration parameters are taken into account. The model proposed in this study can help the engineers to have a better understanding of the behavior of such systems.

Keywords

References

  1. Abraham, K. (2007), "Three dimensional behavior of retaining wall system." PhD thesis, Department of Civil Engineering, Louisiana State. 
  2. Ahmadi, A. and Ahmadi, M.M. (2019), "Three-dimensional numerical analysis of corner effect of an excavation supported by ground anchors", Int. J. Geotech. Eng., 16(7), 903-915. https://doi.org/10.1080/19386362.2019.1682349. 
  3. Anderson, W.F. and Hanna, T.H. (1977), "Model tests on anchored walls retaining overconsolidated sands", Department of Civil Engineering, the University Mappin, Sheffield, England.
  4. Blackburn, J.T. (2005), "Automated sensing and three-dimensional analysis of internally braced excavations", PhD Thesis, Northwestern University, Evanston, IL. 
  5. Bono, N.A., Liu, T.K. and Soydemir, C. (1992), "Performance of an internally braced slurry-diaphragm wall for excavation support", Slurry walls: Design, construction, and quality control, ASTM STP 1129. (Eds., D.B. Paul, R.G. Davidson, and N. J. Cavalli), ASTM, Philadelphia, 169-190. 
  6. Borges, J.L. and Guerra, G.T. (2014), "Cylindrical excavations in clayey soils retained by jet grout walls: Numerical analysis and parametric study considering the influence of consolidation", Comput. Geotech., 55, 42-56. https://doi.org/10.1016/j.compgeo.2013.07.008. 
  7. Briaud, J.L. and Lim, Y. (1999), "Tieback walls in sands: numerical simulation and design implications", J. Geotech. Geoenviron. Eng., 125(2), 101-110. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:2(101). 
  8. Chew, S.H., Yong, K.Y. and Lim, A.Y.K. (1997), "Three-dimensional finite-element analysis of a strutted excavation." Computer methods and advanced in geomechanics, Yuan, Ed., Balkema, Rotterdam, The Netherlands. 
  9. Chheng, C.H. and Likitlersuang, S. (2018), "Underground excavation behaviour in Bangkok using three-dimensional finite element method", Comput. Geotech., 95, 68-81. https://doi.org/10.1016/j.compgeo.2017.09.016. 
  10. Chowdhury, S.S., Deb, K. and Sengupta, A. (2012), "Estimation of design parameters for braced excavation: numerical study", Int. J. Geomech., 13(3), 234-247. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000207. 
  11. Chowdhury, S.S., Deb, K. and Sengupta, A. (2016), "Effect of fines on behavior of braced excavation in sand: experimental and numerical study", Int. J. Geomech., 16(1), 04015018-13. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000487. 
  12. Chung, M. and Briaud, J.L. (1993), "Behavior of a full scale tieback wall in sand", Rep. to Schnabel Foundation and the Federal Highway Administration, Department of Civil Engineering Texas A&M University, College Station, Texas. 
  13. Clough, G.W. and Tsui, Y. (1974), "Performance of tied-back walls in clay", J. Geotech. Eng. Division ASCE, Vol. 100, Nom GT12, 1259-1273. https://doi.org/10.1061/AJGEB6.0000128. 
  14. Comodromos, E.M., Papadopoulou, M.C. and Konstantinidis, G.K. (2013), "Effects from diaphragm wall installation to surrounding soil and adjacent buildings", Comput. Geotech., 53, 106-121. https://doi.org/10.1016/j.compgeo.2013.05.003. 
  15. Dawkins, W.P., Storm, R.W. and Ebeling, R.M. (2003), "User's Guide: Computer program for simulation of construction sequence for stiff wall systems with multiple levels of anchors (CMULTIANC)", Instruction Report ITL-U.S. Army Engineer Research and Development Center, Vickburg, MS. 
  16. Ding, Z.H., Wei, X.J. and Wei, G. (2017), "Prediction methods on tunnel-excavation induced surface settlement around adjacent building", Geomech. Eng., 12(2), 185-195. https://doi.org/10.12989/gae.2017.12.2.185. 
  17. Finno, R.J. and Bryson, L.S. (2002), "Response of a building adjacent to stiff excavation support system in soft clay", J. Perform. Constr. Fac., 16(1), 10-20. https://doi.org/10.1061/(ASCE)0887-3828(2002)16:1(10). 
  18. Finno, R.J. and Roboski, J.F. (2005), "Three-dimensional responses of a tied-back excavation through clay", J. Geotech. Geoenviron. Eng. - ASCE, 131(3), 273-282. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:3(273). 
  19. Hou, Y.M., Wang, J.H. and Zhang, L.L. (2009), "Finite-element modeling of a complex deep excavation in shanghai", Acta Geotechnica, 4(1), 7-16. https://doi.org/10.1007/s11440-008-0062-3. 
  20. Huang, X., Schweiger, H.F. and Huang, H. (2013), "Influence of deep excavations on nearby existing tunnels", Int. J. Geomech., 13(2), 170-180. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000188. 
  21. Ignat, R., Baker, S., Larsson, S. and Liedberg, S. (2015), "Twoand three-dimensional analyses of excavation support with rows of dry deep mixing columns", Comput. Geotech., 66, 16-30. https://doi.org/10.1016/j.compgeo.2015.01.011. 
  22. Karira, H., Kumar, A., Hussain Ali, T., Ali Mangnejo, D. and Mangi, N. (2022), "A parametric study of settlement and load transfer mechanism of piled raft due to adjacent excavation using 3D finite element analysis", Geomech. Eng., 30(2), 169-185. https://doi.org/10.12989/gae.2022.30.2.169. 
  23. Kim, J., Kim, J., Lee, J. and Yoo, H. (2018), "Prediction of transverse settlement trough considering the combined effects of excavation and groundwater depression", Geomech. Eng., 15(3), 851-859. https://doi.org/10.12989/gae.2018.15.3.851. 
  24. Kung, G.T.C. (2009), "Comparison of excavation-induced wall deflection using top-down and bottom-up construction methods in Taipei silty clay", Comput. Geotech., 36, 373-385. https://doi.org/10.1016/j.compgeo.2008.07.001. 
  25. Lee, S.K. (2019), "Experimental study on effect of underground excavation distance on the behavior of retaining wall", Geomech. Eng., 17(5), 413-420. https://doi.org/10.12989/gae.2019.17.5.413. 
  26. Liu, B., Yu, Zh., Xue, Y., Han, Y., Wang, Zh., Yang, SH. and Liu, H. (2020), "A simplified combined analytical method for evaluating the effect of deep surface excavations on the shield metro tunnels", Geomech. Eng., 23(5), 405-418. https://doi.org/10.12989/gae.2020.23.5.405. 
  27. Mosher, R.L. and Knowles, V.R. (1990), "Finite analysis study of tieback wall for Bonneville navigation lock", Technical Report ITL-90-4, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Ms. 
  28. Muntohar, A.S. and Lio, H.J. (2013), "Finite element analysis of the movement of the tie-back wall in alluvial-silty soils", Procedia Eng., 54, 176-187. https://doi.org/10.1016/j.proeng.2013.03.017. 
  29. Ning, Z., Su, M., Xue, Y., Qiu, D., Li, Z.H. and Fu, K. (2021), "Reevaluation of the design and excavation of underground oil storage cavern groups using numerical and monitoring approaches", Geomech. Eng., 27(3), 291-307. https://doi.org/10.12989/gae.2021.27.3.291. 
  30. Orazalin, Z.Y. (2012), "Three-dimensional finite element analysis of a complex excavation on the MIT compus", MSC thesis, Department of Civil and Environmental Engineering, Massachusetts institute of technology, Cambridge, MA. 
  31. Ou, C.Y., Chiou, D.C. and Wu, T.S. (1996), "Three-dimensional finite element analysis of deep excavations", J. Geotech. Geoenviron. Eng., 122(5), 337-345. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:5(337). 
  32. Ou, C.Y. and Shiau, B.Y. (1998), "Analysis of the corner effect on excavation behaviors", Can. Geotech. J., 35(3), 532-540. https://doi.org/10.1139/T98-013. 
  33. Ou, C.Y., Shiau, B.Y. and Wang, I.W. (2000), "Three-dimensional deformation behavior of the Taipei National Enterprise Center (TNEC) excavation case history", Can. Geotech. J., 37(2), 438-448. https://doi.org/10.1139/cgj-37-2-438. 
  34. Ou, C.Y. (2006), "Deep excavation theory and practice", Taylor & Francis/Balkema, London. 
  35. Plant, G.W. (1972), "An assessment of multi - anchored retaining wall behavior", PhD Thesis, University of Sheffield, England.
  36. PLAXIS (2020), "Reference manual, Connect edition V20.04." Bentley. 
  37. Roboski, J.F. and Finno, R.J. (2006), "Distributions of ground movements parallel to deep excavations in clay", Can. Geotech. J., 43(1), 43-58. https://doi.org/10.1139/t05-091. 
  38. Sabatini, P.J. and Bachus. D.G. and Bachus, R.C. (1999), "Ground anchors and anchored systems", Geotechnical Engineering Circular No. 4, FHWA-SA-99-015. 
  39. Sarfarazi, V. and Tabaroei, A. (2020), "Numerical simulation of the influence of interaction between Qanat and tunnel on the ground settlement", Geomech. Eng., 23(5), 455-466. https://doi.org/10.12989/gae.2020.23.5.455. 
  40. Sarfarazi, V., Tabaroei, A. And Asgari, K. (2022), "Discrete element modeling of strip footing on geogrid-reinforced soil", Geomech. Eng., 29(4), 435-449. https://doi.org/10.12989/gae.2022.29.4.435. 
  41. Shi, J.W., Liu, G.B., Huang, P. and Ng, C.W.W. (2015), "Interaction between a large-scale triangular excavation and adjacent structures in Shanghai soft clay", Tunn. Undergr. Sp. Tech., 50, 282-295. https://doi.org/10.1016/j.tust.2015.07.013. 
  42. Simpson, B., O'Rioran, N.J., and Croft, D.D. (1979), "A computer model for the analysis of ground movement in London clay", Geotechnique, 29(2), 149-175. 
  43. Tabaroei,. A. and Ghazavi, M. (2013), "Optimize the placement of nails in soil nailing by three dimensional numerical modeling", Proceedings of the 7th International Symposium on Advances in Science and Technology. 
  44. Tabaroei, A., Sarfarazi, V., Pouraminian. M. and Mohammadzadeh, S.D. (2022), "Evaluation of behavior of a deep excavation by three-dimensional numerical modeling", Periodica Polytechnica Civil Eng., 66(3), 967-977. https://doi.org/10.3311/PPci.20353. 
  45. Tabaroei, A., Seyedi, S.T. and Pouraminian, M. (2023), "Performance of a deep excavation reinforced by soil-nailing during an earthquake excitation", Iran J. Sci. Technol. Trans. Civ. Eng., 47, 3021-3031. https://doi.org/10.1007/s40996-023-01094-x. 
  46. Wang, J., Li, W., Rui, R., Zhai, Y. and He, Q. (2023), "Experimental investigation of earth pressure on retaining wall and ground settlement subjected to tunneling in confined space", Geomech. Eng., 32(2), 179-191. https://doi.org/10.12989/gae.2023.32.2.179. 
  47. Weatherby, D.E., Chung, M., Kim, N.K. and Briaud, J.L. (1998), "Summary report of research on permanent ground anchor walls, Volume ΙΙ: Full-scale wall tests and a soil-structure interaction model", McLean, VA, Federal highway administration. 
  48. Yoo, C.H. and Lee, D. (2008), "Deep excavation-induced ground surface movement characteristics - A numerical investigation", Comput. Geotech., 35, 231-252. https://doi.org/10.1016/j.compgeo.2007.05.002. 
  49. Zdrakovic, L., Potts, D.M. and John, H.D.S. (2005), "Modeling of a 3D excavation in finite element analysis", Geotechnique, 55(7), 497-513.