DOI QR코드

DOI QR Code

독일 아이펠의 지역적 관리에 따른 유럽너도밤나무 숲의 생장변화 추정을 위한 시뮬레이션 개발

Development of Simulation for Estimating Growth Changes of Locally Managed European Beech Forests in the Eifel Region of Germany

  • 투고 : 2024.01.05
  • 심사 : 2024.02.22
  • 발행 : 2024.03.31

초록

숲을 체계적으로 관리하고 경영하기 위해서는 나무생장 변화에 대한 신뢰성 있는 예측이 필요하다. 독일의 아이펠 지역에서는 주요 목재종인 유럽너도밤나무가 식재되어 관리되어 지고 있다. 본 지역의 산림관리자의 실제 산림경영의 경험과 조언을 토대로, 다양한 산림 관리에 따른 단기 및 장기 효과를 예측하고자 지역 특수성을 지니는 시뮬레이션 모델의 접근방법을 개발하고자 하였다. 시뮬레이션 모델은 (1) 묘목 생성, (2) 나무 사멸 조절 (3) 나무 생장의 세 가지 모듈로 구성된다. 산림관리자에 의해 제공된 너도밤나무 숲의 실제 부피 변화를 근사화하기 위해 다양한 변수(나무수, 나무간 거리, 씨앗의 분포, 경쟁)를 반복적으로 수정하여 세 가지 모듈을 결합한 하이브리드 시뮬레이션 모델을 개발할 수 있었다. 본 연구를 통해 유럽너도밤나무 숲의 350년을 모의하여 생장 변화를 예측하였으며, 아이펠 지역의 세 가지 다른 관리 방법 (숲을 보호한 상태에서 목재벌채, 선택적 벌목, 보호림) 시나리오를 적용하였을 때 모의된 결과를 비교하였다. 시뮬레이션 결과를 통해 나무 생장의 변화가 현실적으로 잘 반영되었다는 것을 확인할 수 있었으며, 미래에 장기간 실제 축적된 산림 데이터를 획득하여, 검증과 보정의 과정을 반복한다면 더 높은 정확도의 지역 맞춤형 모델이 개발될 수 있을 것으로 사료된다.

Forest management is known to beneficially influence stand structure and wood production, yet quantitative understanding as well as an illustrative depiction of the effects of different management approaches on tree growth and stand dynamics are still scarce. Long-term management of beech forests must balance public interests with ecological aspects. Efficient forest management requires the reliable prediction of tree growth change. We aimed to develop a novel hybrid simulation approach, which realistically simulates short- as well as long-term effects of different forest management regimes commonly applied, but not limited, to German low mountain ranges, including near-natural forest management based on single-tree selection harvesting. The model basically consists of three modules for (a) natural seedling regeneration, (b) mortality adjustment, and (c) tree growth simulation. In our approach, an existing validated growth model was used to calculate single year tree growth, and expanded on by including in a newly developed simulation process using calibrated modules based on practical experience in forest management and advice from the local forest. We included the following different beech forest-management scenarios that are representative for German low mountain ranges to our simulation tool: (1) plantation, (2) continuous cover forestry, and (3) reserved forest. The simulation results show a robust consistency with expert knowledge as well as a great comparability with mid-term monitoring data, indicating a strong model performance. We successfully developed a hybrid simulation that realistically reflects different management strategies and tree growth in low mountain range. This study represents a basis for a new model calibration method, which has translational potential for further studies to develop reliable tailor-made models adjusted to local situations in beech forest management.

키워드

참고문헌

  1. Armstrong, A., Fischer, R., Huth, A., Shugart, H., Fatoyinbo, T., 2018. Simulating Forest Dynamics of Lowland Rainforests in Eastern Madagascar. Forests 9, 214.
  2. Barna, M., Bosela, M., 2015. Tree species diversity change in natural regeneration of a beech forest under different management. Forest Ecology and Management 342, 93-102.
  3. Bliss, C.I., Fisher, R.A., 1953. Fitting the negative binomial distribution to biological data. Biometrics 9, 176-200.
  4. Bolker, B.M., 2008. Ecological models and data in R. Princeton University Press.
  5. Brunet, J., Fritz, O., Richnau, G., 2010. Biodiversity in European beech forests-a review with recommendations for sustainable forest management. Ecological Bulletins 53, 77-94.
  6. Bundesministerium fur Ernaehrung und Landwirtschaft [BMEL], 2015. The forests in Germany - Selected Results of the Third National Forest Inventory.
  7. Burgin, T., 1975. The gamma distribution and inventory control. Journal of the Operational Research Society 26, 507-525.
  8. Cabral, J.S., Schurr, F.M., 2010. Estimating demographic models for the range dynamics of plant species. Global Ecology and Biogeography 19, 85-97.
  9. Commarmot, B., 2013. Inventory of the largest primeval beech forest in Europe: A Swiss-Ukrainian scientific adventure. Swiss Federal Inst. for Forest, Snow and Landscape Research.
  10. Cuddington, K., Fortin, M.-J., Gerber, L., Hastings, A., Liebhold, A., O'connor, M., Ray, C., 2013. Process-based models are required to manage ecological systems in a changing world. Ecosphere 4, 1-12.
  11. Dennis, B., Patil, G., 1984. The gamma distribution and weighted multimodal gamma distributions as models of population abundance. Mathematical Biosciences 68, 187-212.
  12. Diaci, J., Rozenbergar, D.,, 2001. Regeneration processes in European beech forests. Nat-Man working report 3.
  13. Fischer, R., Ensslin, A., Rutten, G., Fischer, M., Costa, D.S., Kleyer, M., Hemp, A., Paulick, S., Huth, A., 2015. Simulating carbon stocks and fluxes of an African tropical montane forest with an individual-based forest model. PLoS One 10, e0123300.
  14. Fischer, R., Rodig, E., Huth, A., 2018. Consequences of a Reduced Number of Plant Functional Types for the Simulation of Forest Productivity. Forests 9, 460.
  15. Giesecke, T., Hickler, T., Kunkel, T., Sykes, M.T., Bradshaw, R.H., 2007. Towards an understanding of the Holocene distribution of Fagus sylvatica L. Journal of biogeography 34, 118-131.
  16. Gillet, V., McKay, J., Keremane, G., 2014. Moving from local to State water governance to resolve a local conflict between irrigated agriculture and commercial forestry in South Australia. Journal of Hydrology 519, 2456-2467.
  17. Gonzalez de Andres, E., Camarero, J.J., Blanco, J.A., Imbert, J.B., Lo, Y.H., Sanguesa-Barreda, G., Castillo, F.J., 2018. Tree-to-tree competition in mixed European beech-Scots pine forests has different impacts on growth and water-use efficiency depending on site conditions. Journal of Ecology 106, 59-75.
  18. Guisan, A., Zimmermann, N.E., 2000. Predictive habitat distribution models in ecology. Ecological modelling 135, 147-186.
  19. Halpin, C.R., Lorimer, C.G., 2016. Long-term trends in biomass and tree demography in northern hardwoods: An integrated field and simulation study. Ecological Monographs 86, 78-93.
  20. Hanewinkel, M., Pretzsch, H., 2000. Modelling the conversion from even-aged to uneven-aged stands of Norway spruce (Picea abies L. Karst.) with a distance-dependent growth simulator. Forest Ecology and Management 134, 55-70.
  21. Hausler, A., Scherer-Lorenzen, M., 2001. Sustainable forest management in Germany: the ecosystem approach of the biodiversity convention reconsidered. Federal Ministry of Environment.
  22. International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests. [ICP Forests], 2018. ICP Forests online database.
  23. Knapp, N., Fischer, R., Huth, A., 2018a. Linking lidar and forest modeling to assess biomass estimation across scales and disturbance states. Remote Sensing of Environment 205, 199-209.
  24. Knapp, N., Huth, A., Kugler, F., Papathanassiou, K., Condit, R., Hubbell, S., Fischer, R., 2018b. Model-assisted estimation of tropical forest biomass change: a comparison of approaches. Remote Sensing 10, 731.
  25. Leys, A.J., Vanclay, J.K., 2010. Land-use change conflict arising from plantation forestry expansion: Views across Australian fencelines. International Forestry Review 12, 256-269.
  26. Linden, A., Mantyniemi, S., 2011. Using the negative binomial distribution to model overdispersion in ecological count data. Ecology 92, 1414-1421.
  27. Lischke, H., Zimmermann, N.E., Bolliger, J., Rickebusch, S., Loffler, T.J., 2006. TreeMig: a forest-landscape model for simulating spatio-temporal patterns from stand to landscape scale. Ecological modelling 199, 409-420.
  28. Liu, Z., Peng, C., Louis, D., Candau, J.-N., Zhou, X., Kneeshaw, D., 2018. Development of a new TRIPLEX-Insect model for simulating the effect of spruce budworm on forest carbon dynamics. Forests 9, 513.
  29. Lorenz, M., 1995. International co-operative programme on assessment and monitoring of air pollution effects on forests-ICP forests. Water, Air, and Soil Pollution 85, 1221-1226.
  30. Madsen, P., Larsen, J.B., 1997. Natural regeneration of beech (Fagus sylvatica L.) with respect to canopy density, soil moisture and soil carbon content. Forest Ecology and Management 97, 95-105.
  31. Matsushita, M., Takata, K., Hitsuma, G., Yagihashi, T., Noguchi, M., Shibata, M., Masaki, T., 2015. A novel growth model evaluating age-size effect on long-term trends in tree growth. Functional Ecology 29, 1250-1259.
  32. Mette, T., Albrecht, A., Ammer, C., Biber, P., Kohnle, U., Pretzsch, H., 2009. Evaluation of the forest growth simulator SILVA on dominant trees in mature mixed Silver fir-Norway spruce stands in South-West Germany. Ecological Modelling 220, 1670-1680.
  33. Nabel, J.E., Zurbriggen, N., Lischke, H.J.E.M., 2013. Interannual climate variability and population density thresholds can have a substantial impact on simulated tree species' migration. 257, 88-100.
  34. Nabel, J.E.J.G.M.D., 2015. Upscaling with the dynamic two-layer classification concept (D2C): TreeMig-2L, an efficient implementation of the forest-landscape model TreeMig. 8, 3563-3577.
  35. Nelson, T.C., 1964. Diameter distribution and growth of loblolly pine. Forest Science 10, 105-114.
  36. Peng, C., Liu, J., Dang, Q., Apps, M.J., Jiang, H., 2002. TRIPLEX: a generic hybrid model for predicting forest growth and carbon and nitrogen dynamics. Ecological modelling 153, 109-130.
  37. Pommerening, A., Grabarnik, P., 2019. Individual-based Methods in Forest Ecology and Management. Springer.
  38. Poschenrieder, W., Grote, R., Pretzsch, H., 2013. Extending a physiological forest growth model by an observation-based tree competition module improves spatial representation of diameter growth. European Journal of Forest Research 132, 943-958.
  39. Pretzsch, H., Biber, P., Dursky, J., 2002. The single tree-based stand simulator SILVA: construction, application and evaluation. Forest ecology and management 162, 3-21.
  40. Pretzsch, H., Schutze, G., 2009. Transgressive overyielding in mixed compared with pure stands of Norway spruce and European beech in Central Europe: evidence on stand level and explanation on individual tree level. European Journal of Forest Research 128, 183-204.
  41. Rinke, K., Yeates, P., ROTHHAUPT, K.O., 2010. A simulation study of the feedback of phytoplankton on thermal structure via light extinction. Freshwater Biology 55, 1674-1693.
  42. Rodig, E., Cuntz, M., Rammig, A., Fischer, R., Taubert, F., Huth, A., 2018. The importance of forest structure for carbon fluxes of the Amazon rainforest. Environmental Research Letters 13, 054013.
  43. Rozas, V., 2003. Tree age estimates in Fagus sylvatica and Quercus robur: testing previous and improved methods. Plant Ecology 167, 193-212.
  44. San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Durrant, T.H., Mauri, A., Tinner, W., Ballian, D., Beck, P., Birks, H., Eaton, E., 2016. European atlas of forest tree species. p.94.
  45. Schall, P., Gossner, M.M., Heinrichs, S., Fischer, M., Boch, S., Prati, D., Jung, K., Baumgartner, V., Blaser, S., Bohm, S., 2018a. The impact of even-aged and uneven-aged forest management on regional biodiversity of multiple taxa in European beech forests. Journal of Applied Ecology 55, 267-278.
  46. Schall, P., Schulze, E.-D., Fischer, M., Ayasse, M., Ammer, C., 2018b. Relations between forest management, stand structure and productivity across different types of Central European forests. Basic and Applied Ecology 32, 39-52.
  47. Schmid, S., Zingg, A., Biber, P., Bugmann, H., 2006. Evaluation of the forest growth model SILVA along an elevational gradient in Switzerland. European Journal of Forest Research 125, 43-55.
  48. Scholz-Starke, B., Ottermanns, R., Rings, U., Floehr, T., Hollert, H., Hou, J., Li, B., Wu, L.L., Yuan, X., Strauch, K., 2013. An integrated approach to model the biomagnification of organic pollutants in aquatic food webs of the Yangtze Three Gorges Reservoir ecosystem using adapted pollution scenarios. Environmental Science and Pollution Research 20, 7009-7026.
  49. Tatarinov, F.A., Cienciala, E., 2009. Long-term simulation of the effect of climate changes on the growth of main Central-European forest tree species. Ecological Modelling 220, 3081-3088.
  50. Team, R.C., 2015. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.
  51. Thuiller, W., Albert, C., Araujo, M.B., Berry, P.M., Cabeza, M., Guisan, A., Hickler, T., Midgley, G.F., Paterson, J., Schurr, F.M., 2008. Predicting global change impacts on plant species' distributions: future challenges. Perspectives in plant ecology, evolution and systematics 9, 137-152.
  52. Trasobares, A., Zingg, A., Walthert, L., Bigler, C., 2016. A climate-sensitive empirical growth and yield model for forest management planning of even-aged beech stands. European journal of forest research 135, 263-282.
  53. Vanclay, J.K., 1994. Modelling forest growth and yield: applications to mixed tropical forests. School of Environmental Science and Management Papers, 537.
  54. Vanclay, J.K., Skovsgaard, J.P., 1997. Evaluating forest growth models. Ecological Modelling 98, 1-12.
  55. Vandekerkhove, K., De Keersmaeker, L., Menke, N., Meyer, P., Verschelde, P., 2009. When nature takes over from man: Dead wood accumulation in previously managed oak and beech woodlands in North-western and Central Europe. Forest Ecology and Management 258, 425-435.
  56. Von Stosch, M., Oliveira, R., Peres, J., de Azevedo, S.F., 2014. Hybrid semi-parametric modeling in process systems engineering: Past, present and future. Computers & Chemical Engineering 60, 86-101.
  57. Webb, C.O., Peart, D.R., 1999. Seedling density dependence promotes coexistence of Bornean rain forest trees. Ecology 80, 2006-2017.
  58. Wilk, M., Gnanadesikan, R., Huyett, M.M., 1962. Probability plots for the gamma distribution. Technometrics 4, 1-20.