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Simulation of the Phase-Type Distribution Based on the
Minimal Laplace Transform

Sunkyo Kim'

The phase-type, PH, distribution is defined as the time to absorption into a terminal state in a continuous-time
Markov chain. As the PH distribution includes family of exponential distributions, it has been widely used in
stochastic models. Since the PH distribution is represented and generated by an initial probability vector and a
generator matrix which is called the Markovian representation, we need to find a vector and a matrix that are
consistent with given set of moments if we want simulate a PH distribution. In this paper, we propose an approach
to simulate a PH distribution based on distribution function which can be obtained directly from moments. For
the simulation of PH distribution of order 2, closed-form formula and streamlined procedures are given based
on the Jordan decomposition and the minimal Laplace transform which is computationally more efficient than
the moment matching methods for the Markovian representation. Our approach can be used more effectively than
the Markovian representation in generating higher order PH distribution in queueing network simulation.

Key words : Phase-type distribution, moment matching, Jordan decomposition, Laplace transform
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1. Introduction

A random variable with PH-type distribution can be
generated by an initial probability vector a and a
generator matrix A. The pair (a, A) is called the
Markovian representation and the dimension of the
probability vector & and generator matrix A is the order
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of PH-type distribution. That is, if o is 1 Xn and A
isn X n, then the order of PH-type distribution is n in
which case we denote the PH-type distribution by PH
(n). If there is no probability mass at zero, the Markovian
representation (o, A) contains n?+n—1 parameters
whereas the minimal number of parameters is 2n - 1.
That is, the number of independent moments for PH(2)
is only three whereas the number of parameters in (e,
A) is five. As n gets large, the difference between the
number of parameters in (c, A) representation and the
minimal number of parameters increases which makes
it difficult to idenitfy the Markovian representation (c,
A) by the moments matching; see Bobbio et al.l,
Johnson and Taaffe™ > 4, O’Cinneide™®, Telek and
Horvath? ®. On the other hand, however, the moment
matching with the Laplace transform (LT) is straightfor
ward with the minimal form of LT which is available;
see Kim™!,

In this paper, we consider the problem of simulating
a PH(2) with probability distribution function (pdf)
obtained from moments. Unlike previous studies on
moment matching of PH distribution, we focus on the
transformation of moments to the LT and then to the
pdf. Since our approach does not involve the numerical
transformation procedure from moments to the Markovian
representation, computational procedure is much more
streamlined than previous moment matching methods.

The paper is organized as follows. In Section 2, we
review known results on the representation of PH(2)s.
Then, we present our main result on the minimal LT of
PH(2) in Section 3. The pdf of PH(2) by inversion of
LT is given in Section 4 followed by the numerical
examples given in Section 5. We conclude in Section
6 with discussions on future direction of research.

2. Preliminaries

2.1 Markovian representation (a, A)

A PH(n) is fully described by 1xn vector a =
(ay;--0r,,) and nXn generator matrix A where the
entries of o are non-negative. The vector becomes a
probability vector if «; +--- + «,, =1 in which case

there is no probability mass at zero. In this paper, we

[ 20 IRENEETREEREI=N

only consider PH-type distribution with o, +-- + «,,

=1. Therefore, there are n”>+mn—1 parameters in the
Markovian representation (o, A) whereas the minimal
number of parameters of a PH(n) with no probability
mass at zero is 2n—1. For PH(2), the transition rate
matrix A is given in terms of four rate parameters
(A A Agps Ay), e

-\ )‘12}
A =
[/\21 _)\2

where A\, > A, and A, = ).

2.2 Probability density function and moments

Let X be a non-negative random variable with
PH-type distribution (¢, A) with no probability mass at
zero. The pdf can be obtained as

f(z)=aet(—A)e .1

where e is a n<X 1 vector of ones. The k-th moment
of X is given as

E(XY) =Ka(—A) " e.
Also, reduced moments are defined as
r, = E(XY) /K

A PH(n) with no probability mass at zero is completely
described by 2n—1 moments; see Telek et al.”! for
minimal representation of PH(n) distribution. Therefore,
the minimal number of parameters for a PH(2) is three.
That is, three moments, e.g. (r,,7,,7;), are needed for

moment matching for PH(2).

2.3 Eigenvalues and Jordan representation

By the similarity transformation, the reduced moments
can be determined in terms of the eigenvalues of (—A4)~!.
Let E be an n><Xn matrix whose diagonal entries are
eigenvalues of (—A) '. Then the matrix (—A4) ' can be

decomposed as — A~ = I""*ET" where the similarity



transformation matrix I" is normalized so that its row
sums are all equal to 1, i.e. I'e =1; see Telek et al.”
for details. Let v = (v, ...,v,)) be an 1< n vector such

that v=ca I !. Then, the moments can be obtained as

r=a(—A) e =a(I"'ED"e
=al E¥re
=y Fe. (2.2)

The pair (v, E) is called the Jordan representation
which is minimal since the vector v satisfies v, +--
+v, =1. It is worthwhile to mention that v, ...,v, are

not necessarily non-negative.

3. LT and its inversion of PH(2) distribution

3.1 Minimal LT in terms of characteristic
polynomial
The pdf and moments of a PH(n) distribution with
(a, A) can be obtained from the LT which is given as

f(s) =alsI—A)"'(—Ae 3.1
where I is an n X n identity matrix. Note that

_ Adj (s I—A)
A 1__ 20 s £
(s.7=4) | sI—A |

where Adj(*) is an n<Xn adjoint matrix and || is the
determinant of a matrix. Let (a,,a,) be the coefficient

of the characteristic polynomial of A, i.e.
| sI—A | =s*+a;s+a,.

where a, = |—A| and a,=Tr(—A). Following the
argument in Kim®™, if we let b= a(—A)e, then the
LT of a PH(2) in Eq. (3.1) can be written in terms of

3 parameters, (a,, a;,b,), as follows

~ bys+ q

f(S):m- 3.2)

o
Mt
o
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N
P
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=
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Since a PH(2) is completely described by three
moments (rl,r2,r3) which are uniquely determined by
the LT in Eq. (3.2) as

_ (_1)k d/w .
Tk il dskf(S) -
B (=) d* b;s + a,
R | s s>+ a5 +a, im0

there is one-to-one correspondence between (7'1,1“2,1“3)

and (ay,a,,b;). That is,

a,—b, ala,—b) q
(rpry) = : :
ay a; ay
al(a] b]) b, —2aq,
Ty = 3 + 3
Qg y

and

2
I Ty Ty Ty

(a07a]): /-2_/-/- 7/-2_/-/- ’
Ty ™ TTg Ty 1Ty

20y — 14— 1
b= (3.3)

2 _ .
To =TTy

by which the LT can be determined based on moments.
So, we can get the pdf of PH(2) from the moments and
the LT but without (e, A).

In this paper, we assume that the numerator and
denominator of the LT in Eq. (3.2) are coprime, i.e.,

2_
a, * v/ ai —4a,

=
by 5

(3.4)

Otherwise, Eq. (3.2) reduces to the LT of a
exponential distribution.

3.2 Minimal LT in terms of eigenvalues

Let (v, E) be the Jordan representation of a PH(n).
The pdf and moments of a PH(n) distribution can be
obtained from the LT given as
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F(s)=v(s-B)(~Be. (3.5

The inversion of the LT in Eq. (3.5) results in much
simpler form than the inversion of the LT given in (3.1).
For PH(2), let (v,,v,) be the eigenvalues of (—A) '
with v, > v,. Also let v = (v;,1—v,). That is, (—1/
v;,—1/v,) are the toots of the characteristic polynomial
equation given as s”+a,s +a, = 0. Below, we consider
two different cases for the inversion of the LT in (3.5)
to obtain a pdf given in terms of (v,,v,) and wv,.

3.2.1 Distinct eigenvalues
Suppose that v; > v, for a PH(2). Then, the matrix

E is given as

v 0

E =
0 vy

»

and the LT in Eq. (3.5) can be written in terms of 3

parameters, (v, vy, v,), as follows

~ 1/1/1 1/7/2

f(S)_Ulrl/Vl +(1—U1)T1/VQ, (36)

and the entry of the vector v =(v;,1—v,) can be
determined by Eq (2.2), i.e. for £ =1, 2, 3

T}, =vE"e :Vlyll(-i-(l—vl)l/g

from which we get

_ .2 _.3
"NTVy TV Tyl

W A=k A

vy =

Assuming that v; > v,, the one-to-one correspondence
between (v, vy,v,) and (ay ay,b,) can be determined
by equating LTs in Egs. (3.2) and (3.6). That is,

1 vty V1_U1(V1_V2)

(ay,ap:b;) = ,

7 9
Wy Wy SL2)

and

@D =AS 01855 =2

( ) [a1+\/a%4ao al\/af4aoj
VisVy) = ) ’
b2 2a, 2a,
1 (a; —2b,) a’—4a,
o= 14— "0 37
2 a® —4a,

where v, # 1 by the restriction in Eq (3.4).
3.2.2 Identical eigenvalues

If (—A) ' has identical eigenvalues, i.e. v, = v,

then the matrix E is given as
v 1
E =
{0 v 1]

and the LT in Eq. (3.5) can be written in terms of v,

and v,, as follows

f(S)—(l— Ul) Lo

v | s+1/v,
LY (3.8)
v s+1/1/1 ’

and the entry of the vector v =(v;,1—v,) can be
determined by Eq (2.2), i.e. for ¢ =1, 2, 3

k k k—1
r.=vEe=v + kv

from which we get

_ .2 _ .3

Ty — 1] T3~V

vy =r Vv = =
1 1 1 P)
21/1 31/1

By equating Egs. (3.2) and (3.8), we have

and

1——). (3.9)



4, Probability function of a PH(2) by LT
inversion and distribution function

In this section, we propose a new approach in
generating a PH-type random variable without (o, A).
Instead, the proposed procedure is based on the LT and
the pdf obtained directly from moments. We show
procedures to transform moments to LT and then to pdf
based on which PH(2) random variates are generated.

4.1 Distinct eigenvalues
If the characteristic polynomial |s I - A = 0 has
distinct roots, then the pdf can be obtained by inversion
of the LT in (3.5), i.e.
Y 1=v, _, vy
Lo/ V—zle / 4.1)
where v; # 1 by the restriction (3.4). Also note that
1—w, is not necessarily non-negative whereas v; must
be non-negative for the f(x) in (4.1) to be a valid pdf.
Depending on the sign of 1—wv,, the pdf is either
hyper-exponential or mixed generalized Erlang (MGE).

(Case: 1—v; >0)

If 1—v, >0, then we have 0 <v; < 1 and 0 <,
< 1. Therefore, the f(x) in (4.1) is a hyper-exponential,
ie.

w.p.v,

e {Exp(l/yl) 42)

Exp(1/v,) w.p.1—v,

(Case: 1—v, <0)

If 1—v; <0, then the pdf in (4.1) is not a hyper-
exponential. By a simple manipulation, however, it can
be shown that it is a mixed generalized Erlang, i.e.

1% iy
flz) = v1+v2—1)e e
Vo
v —x/y )*1’/1/2
+u, 1—1)( = ) 4.3)
VyJ\Vi—Vy Vo™l

EIEEtA HElof 7|x5t CAY SEHQ AlZ|0 Mo 2ot G
That is,

14 Vo — U

Exp —) w.p. —+ v, ——
¢! Vy Vy

X~ (4.4)

Hypo| —,—| w.p.(1—v )i
v v, -p- 1 v,

where Hypo(1/v,,1/v,) is a hypo-exponential distribution
given as the sum of two independent exponential random
variables each with mean 1/v, and 1/v,.

4.2 ldentical eigenvalues
The LT in Eq. (3.6) is converted into the following
pdf by inversion

T

vl T v 1 T
r)=(1——|—e 'H+——zxe 4.5
f(z) ( s . 4.5)
That is,
1 v
Exp V—) wp.l——
X~ ) . . 46
Erlang(2,—) w.p.—l
121 121

where Erlang(2, v,) distribution is a sum of two
independent and identical exponential random variables

with mean 1/v,.

5. Simulation of PH(2) distribution

5.1 Procedure to generate PH(2)

The results of the previous section can be put together
for generating a PH(2) random variates given a set of
moments. First, let (u;,uyu;) be real-valued random
numbers uniformly distributed between 0 and 1 which
is denoted by U(0,1).

Procedure: PH(2)

- Input: (r),7,73)

- Output: PH(2) random number x

H33E A3 2024 38



oy
2
El

BEGIN
Step 1. Check validity of the moments and determine
if eigenvalues are distinct.

o If 7, =77 and r; =73, stop. “Exponential”;
+ Compute (ay,a,,b,) by Eq. (3.3).

2
LTy TTy Ty
(apay) =| 5—— 55—
To™ Ty Ty TTy

3
B 2riry =1y — 13

1 2
Ty T T Ty

* If @} —4a, <0, stop. “Not a valid PH(2)*;
* Check if eigenvalues are distinct.
- if a —4a, >0, go to step 2.

- if a} —4a, =0, go to step 3.

Step 2. (Case: distinct eigenvalues)
¢ Determine (v, v,,v,) by Eq (3.7).

(v V)_(al-!-\/a%—élao al—\/a%—élaoj
2 2a, ’ 2a, ’

1
vy = 5[1"‘

« If v, <1, generate (u,,u,)~U(0,1).
Generate = as follows by Eq. (4.2) and exit.

(a, —2b,) y/ai —4a, j

2
aj] —4a,

ifu, <o
ifu, > v,

”_{—ln(u2)/u1
v 71n(u2)/1/2

¢ Otherwise, if v; > 1, then generate (uy,uq,u;)~
U(0,1). Generate = as follows by Eq. (4.4) and

exit.
ln(u ) v Vy— U
2 . 1 2~
— ifu, < —+wv,
" 91 2 Vy
ln(u2) ln(u3) . v Vy 1y
- - ifu, > —+u,
31 Vo p) p)

[ 24 EEEINEEIEIZN

Step 3. (Case: identical eigenvalues)
* Determine (v,,v,) by Eq (3.9).

2

T
) 2b

v =— 1——1).
a; a;

* Generate (u,uy,u;)~U(0,1). Generate = as follows
by Eq. (4.6) and exit.

|
_ Infu,) iy, <1- 0
vy LS
T 1
_ n(“z) _ n(u ) lf u >1— ﬂ
L3 L3 LS

END of the procedure.

Note that the condition that r, =77 and 7, =7} in

a, = \/af —4a,

Step 1 is equivalent to b, = 5

5.2 Numerical exmples

5.2.1 Distinct eigenvalues with 1—v; >0

Consider a PH(2) with the following set of moments
(1r1y795m3) = (5/6, 7/9, 41/54) for which we have (ay, a;,b;)
= (3, 4, 3/2) by Eq. (3.3). We also get (v}, v,) = (1, 1/3),
and v,;= 3/4 by Eq. (3.7). The pdf in (4.1) becomes

which is hyper-exponential and can be generated as

w.p. 3/4

Exp(1)
X~ { w.p.1/4

Exp(3)
by Eq. (4.2).

5.2.2 Distinct eigenvalues with 1—v, <0

Consider a PH(2) with the following set of moments



(r,mym3)= (5/9, 8/27, 25/162) for which we have
(ay, a;,b,) = (6, 5, 5/3) by Eq. (3.3). We also get
(vy,v,) = (1/2, 1/3), and v,= 4/3 by Eq. (3.7). The pdf

in (4.1) becomes

f(x):%X

_ 1 .
2 20~ <3 3z
e 3 e
which is not a hyper-exponential, however, can be

rewritten as

%X 2¢ % + %X 6(6721‘ - 6731').

f(x)

by Eq. (4.3). That is, X is an MGE(2) which can be
generated as

Exp(2) w.p.5/6

X~ {Hypoexp(Q, 3) w.p.1/6

by Eq. (4.4).

5.2.3 Identical eigenvalues

Consider a PH(2) with (r,ry,7)= (5/9, 7/27, 1/9)
for which we have (ay, a;,b,) = (9, 6, 1) by Eq. (3.3).
We also get v, = v, =1/3 = (1/3, 1/3), and v,= 2/9 by
Eq. (3.9). The pdf in (4.5) becomes
1

—3r 2 — 3z
3x 2 3
3 3e 3 3 we

f(x)

That is, X is an MGE(2) which can be generated as

Exp(3)
Erlang(2,3)

w.p-1/3
w.p.2/3

x|
by Eq. (4.6).
6. Discussions and conclusions
6.1 Discussions

The PH-type distribution is easy to generate if the
initial probability vector and the generator matrix are

ttol| 7|x

ok
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given. In most queueing network analysis, however, the
initial probability vector and the generator matrix need
to be determined based on moments of arrival or
departure processes. Our approach is motivated by this
observation and can be used more effectively than the
Markovian representation which is harder to obtain
from moments for higher order PH distribution.

6.2 Conclusions and future research

We presented closed-form formula for PH(2) which
can be fitted by three moments. While the procedure
can be extended to higher order PH-type distribution,
the number of moments required for PH(n) increases
linearly, i.e. 2n—1. Moreover, higher-order PH-type
distribution may have complex eigenvalues which is
associated with cycles in transitions among phases. Since
the marginal distribution of stationary intervals of the
Markovian arrival processes is a PH-type distribution, the
results can also be generalized to generate a Markovian
arrival processes.
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