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1. Introduction

A random variable with PH-type distribution can be 

generated by an initial probability vector   and a 

generator matrix A. The pair ( , A) is called the 

Markovian representation and the dimension of the 

probability vector   and generator matrix A is the order 
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ABSTRACT

The phase-type, PH, distribution is defined as the time to absorption into a terminal state in a continuous-time 

Markov chain. As the PH distribution includes family of exponential distributions, it has been widely used in 

stochastic models. Since the PH distribution is represented and generated by an initial probability vector and a 

generator matrix which is called the Markovian representation, we need to find a vector and a matrix that are 

consistent with given set of moments if we want simulate a PH distribution. In this paper, we propose an approach 

to simulate a PH distribution based on distribution function which can be obtained directly from moments. For 

the simulation of PH distribution of order 2, closed-form formula and streamlined procedures are given based 

on the Jordan decomposition and the minimal Laplace transform which is computationally more efficient than 

the moment matching methods for the Markovian representation. Our approach can be used more effectively than 

the Markovian representation in generating higher order PH distribution in queueing network simulation.  

Key words : Phase-type distribution, moment matching, Jordan decomposition, Laplace transform

요   약

단계형 확률분포는 마코프 체인이 특정 상태로 흡수되는 시점까지 거쳐가는 여러 단계에서 체재하는 시간들의 합으로 정

의되며 대기행렬 시스템과 신뢰성 분석 모형 등에 광범위하게 사용된다. 연속적 단계형 분포의 경우 흡수 상태로 진입하기까

지 거쳐가는 각각의 단계에서의 체재 시간이 지수분포를 따르므로 연속적 단계형 분포는 다양한 지수분포들의 합 또는 볼록 

결합으로 나타낼 수 있다. 단계형 분포를 생성하는 가장 일반적이면서도 직관적인 방법은 마코비안 표현방법이라 불리는 초

기 확률벡터와 전이 생성행렬에 의해 주어지는 조건부 확률을 이용하는 것이다. 적률이 주어진 상황에서 단계형 변수를 생성

하는 방법에 대한 기존의 연구들은 대부분 적률을 마코비안 표현방법으로 변환하는 것을 전제로 하고 있다. 본 연구에서는 

적률을 마코비안 표현방법으로 변환하지 않고 확률 분포함수를 결정하여 단계형 확률변수를 생성하는 방법에 대해 살펴보고 

마코프 표현을 사용하는 기존의 방법 대신에 조단 분해법과 최소 표현 라플라스 변환을 이용하여 2계 단계형 확률변수를 

분포함수를 결정하는 공식과 절차를 제시한다. 이러한 접근 방법은 고차원의 단계형 확률분포를 이용하여 대기행렬의 시뮬레

이션을 하는 경우에 마코비안 표현방법의 전이행렬을 결정하여 변수를 생성하는 경우보다 효율적이다.

주요어 : 단계형 확률변수, 적률에 의한 모수 결정, 조단 분해법, 라플라스 변환
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of PH-type distribution. That is, if   is × and A 
is×, then the order of PH-type distribution is  in 

which case we denote the PH-type distribution by PH

(). If there is no probability mass at zero, the Markovian 

representation ( , A) contains   parameters 

whereas the minimal number of parameters is 2–1. 

That is, the number of independent moments for PH(2) 

is only three whereas the number of parameters in ( , 

A) is five. As  gets large, the difference between the 

number of parameters in ( , A) representation and the 

minimal number of parameters increases which makes 

it difficult to idenitfy the Markovian representation ( , 

A) by the moments matching; see Bobbio et al.[1], 

Johnson and Taaffe[2, 3, 4], O’Cinneide[6], Telek and 

Horváth[7, 8]. On the other hand, however, the moment 

matching with the Laplace transform (LT) is straightfor 

ward with the minimal form of LT which is available; 

see Kim[5]. 

In this paper, we consider the problem of simulating 

a PH(2) with probability distribution function (pdf) 

obtained from moments. Unlike previous studies on 

moment matching of PH distribution, we focus on the 

transformation of moments to the LT and then to the 

pdf. Since our approach does not involve the numerical 

transformation procedure from moments to the Markovian 

representation, computational procedure is much more 

streamlined than previous moment matching methods.  

The paper is organized as follows. In Section 2, we 

review known results on the representation of PH(2)s. 

Then, we present our main result on the minimal LT of 

PH(2) in Section 3. The pdf of PH(2) by inversion of 

LT is given in Section 4 followed by the numerical 

examples given in Section 5. We conclude in Section 

6 with discussions on future direction of research.

2. Preliminaries

2.1 Markovian representation (, A)
A PH() is fully described by × vector  

   and × generator matrix A where the 

entries of   are non-negative. The vector becomes a 

probability vector if  ⋯     in which case 

there is no probability mass at zero. In this paper, we 

only consider PH-type distribution with  ⋯  

 . Therefore, there are   parameters in the 

Markovian representation ( , A) whereas the minimal 

number of parameters of a PH() with no probability 

mass at zero is . For PH(2), the transition rate 

matrix A is given in terms of four rate parameters 

    , i.e. 

A =



 
 






where  ≥  and  ≥ . 

2.2 Probability density function and moments
Let X be a non-negative random variable with 

PH-type distribution ( , A) with no probability mass at 

zero. The pdf can be obtained as

               (2.1)

where   is a × vector of ones. The k-th moment 

of X is given as 

   A .

Also, reduced moments are defined as 

 
 

A PH() with no probability mass at zero is completely 

described by  moments; see Telek et al.[9] for 

minimal representation of PH() distribution. Therefore, 

the minimal number of parameters for a PH(2) is three. 

That is, three moments, e.g.    , are needed for 

moment matching for PH(2).

2.3 Eigenvalues and Jordan representation

By the similarity transformation, the reduced moments 

can be determined in terms of the eigenvalues of  . 

Let E be an × matrix whose diagonal entries are 

eigenvalues of (−A)−1. Then the matrix (−A)−1 can be 

decomposed as    where the similarity 
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transformation matrix   is normalized so that its row 

sums are all equal to 1, i.e.   ; see Telek et al.[9] 

for details. Let      be an × vector such 

that  . Then, the moments can be obtained as 

        A E  
         Eke
         ke (2.2)

The pair (, E) is called the Jordan representation 

which is minimal since the vector   satisfies  ⋯

  . It is worthwhile to mention that   are 

not necessarily non-negative. 

3. LT and its inversion of PH(2) distribution

3.1 Minimal LT in terms of characteristic 

polynomial
The pdf and moments of a PH() distribution with 

( , A) can be obtained from the LT which is given as 

           (3.1)

where I is an × identity matrix. Note that 

  ∣ ∣
Adj  

.

where Adj() is an × adjoint matrix and || is the 

determinant of a matrix. Let    be the coefficient 

of the characteristic polynomial of A, i.e.

∣ ∣ .

where  = |−A| and =Tr(−A). Following the 

argument in Kim[5], if we let 1=  , then the 

LT of a PH(2) in Eq. (3.1) can be written in terms of 

3 parameters,    , as follows

           


 
 (3.2)

Since a PH(2) is completely described by three 

moments   which are uniquely determined by 

the LT in Eq. (3.2) as

     
 





 





 

      
 




 

  




 

there is one-to-one correspondence between   

and    . That is,

  
 





 


 
 





 





 

and

 










 





  






             



 
 

(3.3)

by which the LT can be determined based on moments. 

So, we can get the pdf of PH(2) from the moments and 

the LT but without ( , A).

In this paper, we assume that the numerator and 

denominator of the LT in Eq. (3.2) are coprime, i.e., 

          ≠

±



 (3.4)

Otherwise, Eq. (3.2) reduces to the LT of a 

exponential distribution. 

3.2 Minimal LT in terms of eigenvalues
Let (, E) be the Jordan representation of a PH(). 

The pdf and moments of a PH() distribution can be 

obtained from the LT given as 
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            (3.5)

The inversion of the LT in Eq. (3.5) results in much 

simpler form than the inversion of the LT given in (3.1). 

For PH(2), let    be the eigenvalues of (−A)−1 

with  ≥ . Also let    . That is, 

  are the roots of the characteristic polynomial 

equation given as    . Below, we consider 

two different cases for the inversion of the LT in (3.5) 

to obtain a pdf given in terms of    and .

3.2.1 Distinct eigenvalues

Suppose that    for a PH(2). Then, the matrix 

E is given as

E =



 
 




, 

and the LT in Eq. (3.5) can be written in terms of 3 

parameters,    , as follows

  





 (3.6)

and the entry of the vector     can be 

determined by Eq (2.2), i.e. for  =1, 2, 3

  
ke  vkvk

from which we get

 

 






 








 


.

Assuming that  ≥ , the one-to-one correspondence 

between    and     can be determined 

by equating LTs in Eqs. (3.2) and (3.6). That is,

  



 


   

and

 







 





 










        











 








(3.7)

where ≠ by the restriction in Eq (3.4).

3.2.2 Identical eigenvalues

If (−A)−1 has identical eigenvalues, i.e.   , 

then the matrix E is given as 

E =



 
 






and the LT in Eq. (3.5) can be written in terms of  

and , as follows

         
 


.

              

 
 



(3.8)

and the entry of the vector     can be 

determined by Eq (2.2), i.e. for  =1, 2, 3

  
ke k  k

from which we get

    

 






 


.

By equating Eqs. (3.2) and (3.8), we have 

    






 
  . 

and

     


 


   

 
  (3.9)
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4. Probability function of a PH(2) by LT 
inversion and distribution function

In this section, we propose a new approach in 

generating a PH-type random variable without ( , A). 

Instead, the proposed procedure is based on the LT and 

the pdf obtained directly from moments. We show 

procedures to transform moments to LT and then to pdf 

based on which PH(2) random variates are generated. 

4.1 Distinct eigenvalues
If the characteristic polynomial |s I - A| = 0 has 

distinct roots, then the pdf can be obtained by inversion 

of the LT in (3.5), i.e. 

        



 



 (4.1)

where ≠ by the restriction (3.4). Also note that 

 is not necessarily non-negative whereas  must 

be non-negative for the   in (4.1) to be a valid pdf. 

Depending on the sign of , the pdf is either 

hyper-exponential or mixed generalized Erlang (MGE).  

(Case:   )  

If   , then we have      and   
 . Therefore, the   in (4.1) is a hyper-exponential, 

i.e.

       ∼Exp Exp 
(4.2)

(Case:   )

If   , then the pdf in (4.1) is not a hyper- 

exponential. By a simple manipulation, however, it can 

be shown that it is a mixed generalized Erlang, i.e.

     
 

         
 









 (4.3)

That is,

  ∼









Exp

  




 

Hypo



   


(4.4)

where Hypo  is a hypo-exponential distribution 

given as the sum of two independent exponential random 

variables each with mean  and .

4.2 Identical eigenvalues

The LT in Eq. (3.6) is converted into the following 

pdf by inversion

    
 



















.  (4.5)

That is,

     ∼









Exp

  



Erlang
  


(4.6)

where Erlang(2, ) distribution is a sum of two 

independent and identical exponential random variables 

with mean 1/ .

5. Simulation of PH(2) distribution

5.1 Procedure to generate PH(2) 

The results of the previous section can be put together 

for generating a PH(2) random variates given a set of 

moments. First, let   be real-valued random 

numbers uniformly distributed between 0 and 1 which 

is denoted by U(0,1).

Procedure: PH(2) 

- Input: 

- Output: PH(2) random number 
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BEGIN

Step 1. Check validity of the moments and determine 

if eigenvalues are distinct.

∙ If   
 and   

, stop. “Exponential”;

∙ Compute     by Eq. (3.3).

 










 





  






 



 
 



∙ If 
   , stop. “Not a valid PH(2)“;

∙ Check if eigenvalues are distinct.

   - if 
   , go to step 2. 

   - if 
   , go to step 3.   

   

Step 2. (Case: distinct eigenvalues) 

∙ Determine     by Eq (3.7).

 







 





 










  












 







∙ If   , generate ~U(0,1). 

Generate  as follows by Eq. (4.2) and exit.

  ln if  ≤ 
 ln if  ≥ 

∙ Otherwise, if   , then generate ~ 

U(0,1). Generate  as follows by Eq. (4.4) and 

exit.

 











ln if  ≤ 



 



ln


ln if  ≥ 



 

Step 3. (Case: identical eigenvalues) 

∙ Determine    by Eq (3.9).

   


 




  

 
 

∙ Generate ~U(0,1). Generate  as follows 

by Eq. (4.6) and exit.

 











ln if  ≤  




ln


ln if  ≥  


END of the procedure.

Note that the condition that   
 and   

 in 

Step 1 is equivalent to  

±



.

5.2 Numerical exmples

5.2.1 Distinct eigenvalues with   

Consider a PH(2) with the following set of moments 

= (5/6, 7/9, 41/54) for which we have     

= (3, 4, 3/2) by Eq. (3.3). We also get    = (1, 1/3), 

and = 3/4 by Eq. (3.7). The pdf in (4.1) becomes

  


× 


×

which is hyper-exponential and can be generated as

∼Exp  Exp 

by Eq. (4.2). 

5.2.2 Distinct eigenvalues with   

Consider a PH(2) with the following set of moments 
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= (5/9, 8/27, 25/162) for which we have 

    = (6, 5, 5/3) by Eq. (3.3). We also get 

   = (1/2, 1/3), and = 4/3 by Eq. (3.7). The pdf 

in (4.1) becomes

  


×  


×

which is not a hyper-exponential, however, can be 

rewritten as

  


×  


×  .

by Eq. (4.3). That is, X is an MGE(2) which can be 

generated as 

∼Exp Hypoexp  wp

by Eq. (4.4). 

5.2.3 Identical eigenvalues

Consider a PH(2) with = (5/9, 7/27, 1/9) 

for which we have     = (9, 6, 1) by Eq. (3.3). 

We also get      = (1/3, 1/3), and = 2/9 by 

Eq. (3.9). The pdf in (4.5) becomes

   

×  


× .

That is, X is an MGE(2) which can be generated as 

∼Exp Erlang wp

by Eq. (4.6). 

6. Discussions and conclusions

6.1 Discussions
The PH-type distribution is easy to generate if the 

initial probability vector and the generator matrix are 

given. In most queueing network analysis, however, the 

initial probability vector and the generator matrix need 

to be determined based on moments of arrival or 

departure processes. Our approach is motivated by this 

observation and can be used more effectively than the 

Markovian representation which is harder to obtain 

from moments for higher order PH distribution. 

6.2 Conclusions and future research
We presented closed-form formula for PH(2) which 

can be fitted by three moments. While the procedure 

can be extended to higher order PH-type distribution, 

the number of moments required for PH() increases 

linearly, i.e. . Moreover, higher-order PH-type 

distribution may have complex eigenvalues which is 

associated with cycles in transitions among phases. Since 

the marginal distribution of stationary intervals of the 

Markovian arrival processes is a PH-type distribution, the 

results can also be generalized to generate a Markovian 

arrival processes.
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