DOI QR코드

DOI QR Code

Classification Abnormal temperatures based on Meteorological Environment using Random forests

랜덤포레스트를 이용한 기상 환경에 따른 이상기온 분류

  • Youn Su Kim (Department of Computer Science and Statistic, Chosun University) ;
  • Kwang Yoon Song (Department of Computer Science and Statistic, Chosun University) ;
  • In Hong Chang (Department of Computer Science and Statistic, Chosun University)
  • 김윤수 (조선대학교 컴퓨터통계학과) ;
  • 송광윤 (조선대학교 컴퓨터통계학과) ;
  • 장인홍 (조선대학교 컴퓨터통계학과)
  • Received : 2024.02.08
  • Accepted : 2024.02.28
  • Published : 2024.03.30

Abstract

Many abnormal climate events are occurring around the world. The cause of abnormal climate is related to temperature. Factors that affect temperature include excessive emissions of carbon and greenhouse gases from a global perspective, and air circulation from a local perspective. Due to the air circulation, many abnormal climate phenomena such as abnormally high temperature and abnormally low temperature are occurring in certain areas, which can cause very serious human damage. Therefore, the problem of abnormal temperature should not be approached only as a case of climate change, but should be studied as a new category of climate crisis. In this study, we proposed a model for the classification of abnormal temperature using random forests based on various meteorological data such as longitudinal observations, yellow dust, ultraviolet radiation from 2018 to 2022 for each region in Korea. Here, the meteorological data had an imbalance problem, so the imbalance problem was solved by oversampling. As a result, we found that the variables affecting abnormal temperature are different in different regions. In particular, the central and southern regions are influenced by high pressure (Mainland China, Siberian high pressure, and North Pacific high pressure) due to their regional characteristics, so pressure-related variables had a significant impact on the classification of abnormal temperature. This suggests that a regional approach can be taken to predict abnormal temperatures from the surrounding meteorological environment. In addition, in the event of an abnormal temperature, it seems that it is possible to take preventive measures in advance according to regional characteristics.

Keywords

Acknowledgement

이 논문은 2019년 대한민국 교육부와 한국연구재단의 지원을 받아 수행된 연구임 (NRF-2019S1A6A3A01059888).

References

  1. 임인재, 박성철, 이덕환., 논쟁적 과학이슈에 대한 신문보도 분석: 기후변화의 원인과 대응 관련 보도를 중심으로. 한국언론학보, Vol. 57, No. 6, pp. 469-501, 2013.
  2. 김준, et al., Korean Climate Change Assessment Report 2020. 2020.
  3. 국립기상과학원, 한반도 100년의 기후변화, 2018
  4. 한국. 2022년 이상기후 보고서. 서울: 기상청, 2023.
  5. 허인혜, 이승호., 한국의 이상기온 출현 빈도의 변화와 그 요인에 관한 연구. 대한지리학회지, Vol. 41, No. 1, pp. 94-105, 2006.
  6. 박미나, 최영은., 우리나라의 재현기간별 일 최고기온 극값 변화 및 미래 전망에 관한 연구. 국토지리학회지, Vol. 54, No. 1, pp. 37-48, 2020. https://doi.org/10.22905/KAOPQJ.2020.54.1.37
  7. 심창섭, 문준기, 한지현, 서지현, 송영일, 홍제우, 유명수., 우리나라 지역별 기후변화 전망과 적응정책 차원의 시사점., 2022.
  8. 심교문, 김용석, 정명표, 김석철, 민성현, 소규호., 한국의 농업기후지대별 이상기온 출현 특성 평가. 한국기후변화학회지, Vol. 4, No. 2, pp. 189-199, 2013.
  9. 박태원, 박현빈, 장준기, 박종석, 유민숙., 한반도에서의 이상고온 발생의 지역적 특징. 과학영재교육, Vol. 13, No. 1, pp. 1-12, 2021.
  10. 김영인, 김동현, 이승오., 기계학습을 활용한 하절기 기온 및 폭염발생여부 예측. 한국방재안전학회 논문집, Vol. 13, No. 2, pp. 27-38, 2020.
  11. Breiman, L., Random forests. Machine learning, Vol. 45, pp. 5-32, 2001.
  12. Hastie, T., Tibshirani, R., Friedman, J. H. and Friedman, J. H., "The elements of statistical learning: Data mining, inference, and prediction, Springeer, New York.", 2009.
  13. Park, E. J., Park, J. H., & Kim, H. H., "Mapping species-specific optimal plantation sites using random forest in Gyeongsangnam-do province, South Korea.", J. Agric. Life Sci, Vol. 53, pp. 65-74, 2019.
  14. Qiu, X. and Choi, P., "A study on discrimination in mortgage lending in the United States: A revisit by random forest method.", Journal of the Korean Data & Information Science Society, Vol. 30, pp. 261-370, 2019.
  15. Heo, T. I., Kim, D. H., and Hwang, S. W., "Identification of Celtis species using random forest with infrared spectroscopy and analysis of spectral feature importance.", Journal of the Korean Data & Information Science Society, Vol. 32, pp. 1183-1194, 2021. https://doi.org/10.7465/jkdi.2021.32.6.1183
  16. Kim, H., & Lee, W., "On sampling algorithms for imbalanced binary data: performance comparison and some caveats.", The Korean Journal of Applied Statistics, Vol. 30, No. 5, pp. 681-690, 2017. https://doi.org/10.5351/KJAS.2017.30.5.681
  17. Hong, C. S., and Jang, D. H., "Partial AUC using the sensitivity and specificity lines.", Korean Journal of Applied Statistics, Vol. 33, pp. 541-553, 2020. https://doi.org/10.5351/KJAS.2020.33.5.541
  18. Stocker, T. (Ed.)., "Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change.", Cambridge university press., 2014.