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Abstract. In this paper, we focus on partial isometry elements and strongly EP elements

on a ring. We construct characterizing equations such that an element which is both group

invertible and MP-invertible, is a partial isometry element, or is strongly EP, exactly when

these equations have a solution in a given set. In particular, an element a ∈ R# ∩R† is a

partial isometry element if and only if the equation x = x(a†)∗a† has at least one solution

in {a, a#, a†, a∗, (a#)∗, (a†)∗}. An element a ∈ R#∩R† is a strongly EP element if and only

if the equation (a†)∗xa† = xa†a has at least one solution in {a, a#, a†, a∗, (a#)∗, (a†)∗}.
These characterizations extend many well-known results.

1. Introduction

Throughout this paper, R denotes an associative ring with 1. We write E(R)
and J(R) to denote the set of all idempotents and the Jacobson radical of R,
respectively.

An element a ∈ R is said to be group invertible if there exists an element a# ∈ R
such that

aa#a = a, a#aa# = a#, aa# = a#a.

The element a# is called the group inverse of a, which is uniquely determined by the
above equations [1, 9]. An involution ∗ : a 7−→ a∗ in a ring R is an anti-isomorphism
of degree 2, that is,

(a∗)∗ = a, (a+ b)∗ = a∗ + b∗, (ab)∗ = b∗a∗.
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An element a in R is called normal if aa∗ = a∗a. An element a† in R is called
the Moore-Penrose inverse (MP-inverse) of a [6, 10], if

aa†a = a, a†aa† = a†, (aa†)∗ = aa†, (a†a)∗ = a†a.

If such a† exists, then it is unique [6]. Denote by R# and R† the set of group
invertible elements of R and the set of all MP-invertible elements of R, respectively.
An element a is said to be EP if a ∈ R# ∩ R† and satisfies a# = a† [3, 6]. We
denote by REP the set of all EP elements of R. Note that if a ∈ R† is normal, then
a ∈ REP , see [6]. An element a ∈ R is called normal EP if a is normal and a ∈ R†.
Denote by RNEP the set of all normal EP elements of R. An element a is called a
partial isometry if a† = a∗ and a is called a strongly EP element if a ∈ REP is a
partial isometry. We denote the sets of all partial isometry elements and strongly
EP elements of R by RPI and RSEP , respectively.

In [7], D. Mosić and D. S. Djordjević presented some characterizations of EP
elements in rings with involution. In addition, some equivalent conditions for the
element a in a ring with involution to be a partial isometry are given. Recent
researches on EP elements in rings with involution have produced some interesting
results, see [4, 9, 12]. The necessary and sufficient conditions for the existence of
a common solution and the general common solution of the equation axb = c (a, b
are regular elements) were given for rings with involution in [2]. In [13, 15], a new
kind of characterizations of generalized inverse elements has been studied by means
of the solution of constructed equations recently.

Motivated by these articles above, this paper is intended to provide, by using
certain equations admitting solutions in a definite set, further sufficient and neces-
sary conditions for an element in a ring with involution to be an EP element, partial
isometry, normal EP element, and strongly EP element. This is a new way to study
generalized inverses in rings.

2. EP elements

Lemma 2.1.[5, 7] Let a ∈ R# ∩R†. If a∗aa#(1− aa†) = 0, then a ∈ REP .

Proof. Pre-multiplying the equality a∗aa#(1 − aa†) = 0 by (a†)∗, we have
aa#(1 − aa†) = 0. That is aa# = aa†. Hence a ∈ REP by [7, Theorem 1.6] or
[5]. 2

Lemma 2.2. Let a ∈ R# ∩R†. Then a ∈ RPI if and only if a∗a† = a†a†.

Proof. ⇒ The equality obviously holds since a∗ = a†.
⇐ Post-multiplying a∗a† = a†a† by a, one has a∗a†a = a†a†a. Apply-

ing the involution to the last equality, we have a†a2 = a†a(a†)∗, it follows that
a2 = a(a†)∗. Post-multiplying the equality by a∗, we get a2a∗ = a2a†. Pre-
multiplying a2a∗ = a2a† by a#, one has aa∗ = aa†. Thus a ∈ RPI by [7, Theorem
2.1]. 2
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In order to prove the theorems given in this paper more clearly, we briefly review
the following existing conclusions:

Lemma 2.3.[11, Lemma 2.2] Let a ∈ R#. Then (a#)∗R = a∗R and R(a#)∗ =
Ra∗.

Lemma 2.4.[11, Lemma 2.3] Let a ∈ R†. Then

(1) aR = aa†R = aa∗R and Ra = Ra†a = Ra∗a.

(2) a∗R = a†R = a∗aR = a†aR and Ra∗ = Ra† = Raa∗ = Raa†.

Lemma 2.5.[12, Theorem 3.9] Let a ∈ R. Then the following are equivalent:

(1) a ∈ REP ;

(2) a ∈ R# and aR ⊆ a∗R;

(3) a ∈ R# and Ra ⊆ Ra∗;

(4) a ∈ R# and a∗R ⊆ aR;

(5) a ∈ R# and Ra∗ ⊆ Ra.

Lemma 2.6.[14, Lemma 2.1] Let a ∈ R# ∩ R†. Then the following conditions
are satisfied:

(1) a∗R = a∗a2R = a∗aa#R = (a#)∗R;

(2) Ra = Ra# = Raa∗a# = Ra∗a = Ra∗a∗a = Ra†a∗a;

(3) (a#)∗aa†R = (a#)∗a#a†R = (a#)∗a#a∗R;

(4) a#R = aR and Ra∗ = Ra†.

In [14, Theorem 2.4], the authors proved that an element a ∈ R# ∩ R† can be
an EP element if and only if the equation axa# + axa∗ = xaa† + a∗ax has at least
one solution in the set χa = {a, a#, a†, a∗, (a#)∗, (a†)∗}.

Recall that an element a is said to be EP if a ∈ R# ∩R† and satisfies a# = a†.
Thus, we can modify the above existing theorem in [14] and construct the following
equation, with the help of which we can explore a new kind of characterization of
EP elements:

(2.1) axa† + axa∗ = xaa# + a∗ax.

Theorem 2.7. Let a ∈ R# ∩ R†. Then a ∈ REP if and only if equation (2.1) has
at least one solution in χa = {a, a#, a†, a∗, (a#)∗, (a†)∗}.
Proof. ⇒ Obviously, x = a† is a solution because a† = a#.

⇐ (1) If x = a is a solution, then a2a† + a2a∗ = a2a# + a∗a2 = a + a∗a2. By
Lemma 2.6, we have

a∗R = a∗a2R = (a2a† + a2a∗ − a)R ⊆ aR.

Therefore a ∈ REP by Lemma 2.5.
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(2) If x = a# is a solution, then aa#a†+aa#a∗ = a#aa#+a∗aa# = a#+a∗aa#.
By Lemma 2.6, we obtain that

a∗R = a∗aa#R = (aa#a† + aa#a∗ − a#)R ⊆ aR.

The fact that a ∈ REP follows from Lemma 2.5.
(3) If x = a† is a solution, then aa†a† + aa†a∗ = a†aa# + a∗aa† = a†aa# + a∗.

Pre-multiplying it by aa#, we obtain aa†a† + aa†a∗ = a# + a#aa∗. By Lemma 2.6,
we have

Ra# = R(aa†a† + aa†a∗ − a#aa∗) ⊆ Ra† +Ra∗ = Ra†.

Since Ra# = Ra,Ra† = Ra∗ by Lemma 2.6, we get Ra ⊆ Ra∗. From Lemma 2.5,
a ∈ REP .

(4) If x = a∗ is a solution, then aa∗a†+aa∗a∗ = a∗aa#+a∗aa∗. Post-multiplying
it by (1− aa†), we have a∗aa#(1− aa†) = 0. By Lemma 2.1, we get a ∈ REP .

(5) If x = (a#)∗ is a solution, then a(a#)∗a†+a(a#)∗a∗ = (a#)∗aa#+a∗a(a#)∗.
Post-multiplying it by (1−aa†), we get (a#)∗aa#(1−aa†) = 0. Pre-multiplying the
last equation by (a2)∗, we get a∗aa#(1− aa†) = 0. Therefore a ∈ REP by Lemma
2.1.

(6) If x = (a†)∗ is a solution, then a(a†)∗a† + a(a†)∗a∗ = (a†)∗aa# + a∗a(a†)∗.
Taking involution of the above equality, we obtain that

(a†)∗a†a∗ + aa†a∗ = (a#)∗a∗a† + a†a∗a.

Lemma 2.6 now leads to

Ra = Ra†a∗a = R((a†)∗a†a∗ + aa†a∗ − (a#)∗a∗a†) ⊆ Ra∗ +Ra† = Ra† = Ra∗.

From Lemma 2.5, a ∈ REP . 2

Multipying the equation (2.1) on the right by a, we obtain:

(2.2) axa†a+ axa∗a = ax+ a∗axa.

Theorem 2.8. Let a ∈ R# ∩ R†. Then a ∈ REP if and only if the equation (2.2)
has at least one solution in χa.

Proof. ⇒Obviously, x = a† is a solution.
⇐ (1) If x = a is a solution, then a2a†a + a2a∗a = a2 + a∗a3. It is immediate

that a2a∗a = a∗a3. By Lemma 2.4, we obtain that

a∗R = a∗a3R = a2a∗aR ⊆ aR.

Hence a ∈ REP by Lemma 2.5.
(2) If x = a# is a solution, then aa#a†a + aa#a∗a = aa# + a∗aa#a. That

is aa#a∗a = a∗a. Post-multiplying it by a, we obtain that aa#a∗a2 = a∗a2. By
Lemma 2.6, we get

a∗R = a∗a2R = aa#a∗a2R ⊆ aR.
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Therefore, a ∈ REP by Lemma 2.5.
(3) If x = a† is a solution, then aa†a†a + aa†a∗a = aa† + a∗aa†a = aa† + a∗a.

Post-multiplying it by a, we have aa†a†a2 + aa†a∗a2 = a+ a∗a2. We thus get

a∗R = a∗a2R = (aa†a†a2 + aa†a∗a2 − a)R ⊆ aR

by Lemma 2.6. And then it follows from Lemma 2.5 that a ∈ REP .
(4) If x = a∗ is a solution, then aa∗a†a+ aa∗a∗a = aa∗ + a∗aa∗a. We conclude

from Lemma 2.4 that

Ra∗ = Raa∗ = R(aa∗a†a+ aa∗a∗a− a∗aa∗a) ⊆ Ra.

Hence a ∈ REP by Lemma 2.5.
(5) If x = (a#)∗ is a solution, then a(a#)∗a†a+a(a#)∗a∗a = a(a#)∗+a∗a(a#)∗a.

Pre-multiplying it by a†, we get (a#)∗a†a+(a#)∗a∗a = (a#)∗+a†a∗a(a#)∗a. Then
from Lemma 2.3, we obtain that

Ra∗ = R(a#)∗ = R((a#)∗a†a+ (a#)∗a∗a− a†a∗a(a#)∗a) ⊆ Ra,

which yields a ∈ REP by Lemma 2.5.
(6) If x = (a†)∗ is a solution, then a(a†)∗a†a+ a(a†)∗a∗a = a(a†)∗ + a∗a(a†)∗a.

That is a2 = a∗a(a†)∗a. Post-multiplying it by a#, we obtain that a = a∗a(a†)∗aa#.
Then

aR = a∗a(a†)∗aa#R ⊆ a∗R.

Therefore, a ∈ REP by Lemma 2.5. 2

Further, we revised the equation (2.2) as follows:

(2.3) axa†a+ xaa∗a = ax+ a∗axa.

Theorem 2.9. Let a ∈ R# ∩ R†. Then a ∈ REP if and only if the equation (2.3)
has at least one solution in χa.

Proof. ⇒ x = a† is a solution since aa† = a†a.
⇐ (1) If x = a is a solution, then a2a†a + a2a∗a = a2 + a∗a3. It is immediate

from the proof of Theorem 2.8(1) that a ∈ REP .
(2) If x = a# is a solution, then aa#a†a + a#aa∗a = aa# + a∗aa#a. Then

a ∈ REP by the proof of Theorem 2.8(2) since aa# = a#a.
(3) If x = a† is a solution, then aa†a†a + a†aa∗a = aa† + a∗aa†a = aa† + a∗a.

That is aa†a†a = aa†. Applying the involution, one has aa† = a†a2a†. By Lemma
2.4 and Lemma 2.5, we have a ∈ REP .

(4) If x = a∗ is a solution, then aa∗a†a + a∗aa∗a = aa∗ + a∗aa∗a. That is
aa∗a†a = aa∗. From Lemma 2.4, we obtain that

Ra∗ = Raa∗ = Raa∗a†a ⊆ Ra.
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By Lemma 2.5, a ∈ REP .
(5) If x = (a#)∗ is a solution, then a(a#)∗a†a+(a#)∗aa∗a = a(a#)∗+a∗a(a#)∗a.

Pre-multiplying it by a†, we have (a#)∗a†a+ a†(a#)∗aa∗a = (a#)∗ + a†a∗a(a#)∗a.
By Lemma 2.3, we have

Ra∗ = R(a#)∗ = R((a#)∗a†a+ a†(a#)∗aa∗a− a†a∗a(a#)∗a) ⊆ Ra,

which gives a ∈ REP by Lemma 2.5.
(6) If x = (a†)∗ is a solution, then a(a†)∗a†a+ (a†)∗aa∗a = a(a†)∗ + a∗a(a†)∗a.

That is (a†)∗aa∗a = a∗a(a†)∗a. Pre-multiplying it by (1− aa†), we have

(1− aa†)a∗a(a†)∗a = 0.

Hence 0 = (1 − aa†)a∗a(a†aa†)∗a = (1 − aa†)a∗a(a†)∗a†a2. Multiplying the last
equality by a# on the right, we obtain that 0 = (1 − aa†)a∗a(a†)∗a†a = (1 −
aa†)a∗a(a†)∗. Post-multiply it by a∗ and then we have

(1− aa†)a∗a2a† = 0.

Post-multiplying it by aa#a†, we get (1 − aa†)a∗ = 0, which implies a = a2a†.
Consequently, a ∈ REP . 2

Theorem 2.10. Let a ∈ R# ∩ R†. Then a ∈ REP if and only if the equality
a†xa = a∗ has at least one solution.

Proof. ⇒ Since a ∈ REP , we have aa† = a†a. Hence x = aa∗a† is a solution of the
equation a†xa = a∗.

⇐ Assume that a†xa = a∗ have a solution x0. Then Ra∗ = Ra†x0a ⊆ Ra, it
follows that a ∈ REP by Lemma 2.5. 2

Theorem 2.11. Let a ∈ R# ∩ R†. Then a ∈ REP if and only if the equation
a†xa = aa# − aa† has at least one solution.

Proof. ⇒ Since a ∈ REP , we have aa#−aa† = 0. Then x = aa#−aa† is a solution
of the equation a†xa = aa# − aa†.

⇐ Assume that a†xa = aa# − aa† has a solution. Then, by [2, Theorem 2.1],
we get

(2.4) aa# − aa† = a†a(aa# − aa†)a†a.

Pre-multiplying (2.4) by a, we obtain that

a− a2a† = a(aa# − aa†)a†a = a− a2a†a†a.

That is a2a† = a2a†a†a.
On the other hand, post-multiply (2.4) by a, we have

(2.5) a†a(aa# − aa†)a†a2 = 0.
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Pre-multiplying (2.5) by a and then post-multiplying the last equation by a#, we
obtain that

a(aa# − aa†)a†a = 0.

That is a = a2a†a†a. Obviously, we can deduce that a = a2a†. Consequently,
a ∈ REP . 2

Let a ∈ R. Write a0 = {x ∈ R|ax = 0}. Clearly, a0 is a right ideal of R, which
is called the right annihilator of a. Similarly, we can define 0a. Then, we have the
following theorem.

Theorem 2.12. Let a ∈ R# ∩R†. Then a ∈ REP if and only if a0=(a†)0.

Proof. ⇒ Since a ∈ REP , we have a# = a†. Therefore (a#)o = (a†)0. Note that
a0 = (a#)0. Then a0 = (a†)0.

⇐ Assume that a0 = (a†)0. Note that 1− a†a ∈ (a#)0. Then 1− a†a ∈ (a†)0,
which implies a† = a†a†a. Hence Ra† ⊆ Ra, one obtains a ∈ REP by Lemma 2.4
and Lemma 2.5. 2

3. Partial Isometry Elements

Recall that an element c ∈ R is semi-idempotent if c − c2 ∈ J(R). Using the
semi-idempotent elements of R, we have the following theorem.

Theorem 3.1. Let a ∈ R†. Then a ∈ RPI if and only if the following two
conditions hold:
(1) aa∗ is a semi-idempotent;
(2) a† − a∗ ∈ R#.

Proof. The equality a∗ = a† implies that

aa∗ − aa∗aa∗ = 0 ∈ J(R) and a† − a∗ = 0 ∈ E(R) ⊆ R#.

On the contrary, assume that aa∗ is semi-idempotent and a† − a∗ ∈ R#. Take
aa∗ − aa∗aa∗ = x ∈ J(R). Then, by the proof of [14, Theorem 2.6], one has
a† − a∗ = a†(a†)∗a†x ∈ J(R). Set z = (a† − a∗)# because a† − a∗ ∈ R#. Then
a† − a∗ = (a† − a∗)z(a† − a∗). Thus, we get

(a† − a∗)(1− z(a† − a∗)) = (a† − a∗)− (a† − a∗)z(a† − a∗) = 0.

Since z(a†−a∗) ∈ J(R), we obtain that 1−z(a†−a∗) is invertible. Hence a†−a∗ = 0,
so a ∈ RPI . 2

Theorem 3.2. Let a ∈ R†. Then the following conditions are equivalent:
(1) a†(a†)∗ ∈ E(R);
(2) (a†)∗a† ∈ E(R);
(3) a ∈ RPI ;
(4) a†(a†)∗ is a semi-idempotent and a∗ − a† ∈ E(R);
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(5) a†a− a†(a†)∗ ∈ E(R);
(6) aa† − (a†)∗a† ∈ E(R);
(7) (a†)∗a† is a semi-idempotent and a∗ − a† ∈ E(R).

Proof. (1)⇒(2) From the assumption, we know that a†(a†)∗ = a†(a†)∗a†(a†)∗.
Pre-multiplying it by a and then post-multiplying the last equality by a†, we get
(a†)∗a† = (a†)∗a†(a†)∗a†.

(2)⇒(3) From (2), we obtain that (a†)∗a† = (a†)∗a†(a†)∗a†. Post-multiplying
it by aa∗, we get aa† = (a†)∗a†. Multiply the equality by a on the right and then
we get a = (a†)∗. Applying involution to a = (a†)∗, we get a∗ = a†. Consequently,
a ∈ RPI .

(3)⇒(4) Since a ∈ RPI , a∗ = a†. Then we know that a∗ − a† = 0 ∈ E(R)
and a†(a†)∗ − a†(a†)∗a†(a†)∗ = 0 ∈ J(R). It is immediate that a†(a†)∗ is a semi-
idempotent and a∗ − a† ∈ E(R).

(4)⇒(5) Write x = a†a−a†(a†)∗. Then x−x2 = a†(a†)∗−a†(a†)∗a†(a†)∗ ∈ J(R)
by hypothesis. Clearly, a(x− x2)a∗a = a− (a†)∗. Note that a∗ − a† ∈ E(R). Then
a− (a†)∗ ∈ E(R), this gives a(x− x2)a∗a ∈ J(R) ∩ E(R), so a(x− x2)a∗a = 0. It
follows that a = (a†)∗. Hence a†a− a†(a†)∗ ∈ E(R).

(5)⇒(6) From (5), we know that a†(a†)∗ = a†(a†)∗a†(a†)∗. Pre-multiplying it
by a and then multiplying the last equality by a† on the right, we obtain that

(a†)∗a† = (a†)∗a†(a†)∗a†.

Hence aa†−(a†)∗a†−(aa†−(a†)∗a†)(aa†−(a†)∗a†) = (a†)∗a†−(a†)∗a†(a†)∗a† = 0.
Consequently, aa† − (a†)∗a† ∈ E(R).

(6)⇒(7) From (6), we obtain that (a†)∗a† = (a†)∗a†(a†)∗a†. So (a†)∗a† is an
idempotent. By (2)⇒(3), we get a∗ = a†, which gives a∗ − a† = 0 ∈ E(R).

(7)⇒(1) Similar to (4)⇒(5), we obtain that a∗ = a†. Then

a†(a†)∗a†(a†)∗ = a†aa†(a†)∗ = a†(a†)∗.

Therefore, a†(a†)∗ ∈ E(R). 2

Lemma 3.3. Let a ∈ R†. Then a ∈ RPI if and only if a† = a†(a†)∗a†.

Proof. ⇒ Since a ∈ RPI , a∗ = a†. And then we can easily get

a†(a†)∗a† = a†aa† = a†.

⇐ From the assumption, we know that a† = a†(a†)∗a†. Pre-multiplying it by a and
then post-multiplying the last equality by a, we get a = (a†)∗. Taking involution
of the above equality, we obtain a∗ = a†. So a ∈ RPI . 2

Lemma 3.4. Let a ∈ R# ∩R†. Then a ∈ RPI if and only if a2 = a(a†)∗.
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Proof. ⇒ We know that a∗ = a† according to the assumption. Then we can get the
following equality.

a(a†)∗ = a(a∗)∗ = a2.

⇐ From the assumption, we know that a2 = a(a†)∗. Post-multiplying it by a∗, we
have a2a∗ = a2a†. Hence a ∈ RPI by [8, Theorem 2.1]. 2

Lemma 3.5. Let a ∈ R# ∩R†. Then a ∈ RPI if and only if the following equation
has at least one solution in χa:

(2.1) x = x(a†)∗a†.

Proof. ⇒ Obviously, a∗ is a solution.

⇐ (1) If x = a is a solution, then a = a(a†)∗a†. Post-multiplying it by a, we
have a2 = a(a†)∗. By Lemma 3.4, a ∈ RPI .

(2) If x = a# is a solution, then a# = a#(a†)∗a† is a solution. Pre-multiplying
it by a2, we get a = a(a†)∗a†. By the proof of (1), we know a ∈ RPI .

(3) If x = a† is a solution, then a† = a†(a†)∗a†. Hence a ∈ RPI by Lemma 3.3.
(4) If x = a∗ is a solution, then a∗ = a∗(a†)∗a† = a†. It is immediate that

a ∈ RPI .
(5) If x = (a#)∗ is a solution, then (a#)∗ = (a#)∗(a†)∗a†. Post-multiplying it

by a, we get (a#)∗a = (a#)∗(a†)∗. Applying involution to the above equality, we
have a∗a# = a†a#. Then we deduce that a ∈ RPI by [8, Theorem 2.1].

(6) If x = (a†)∗ is a solution, then (a†)∗ = (a†)∗(a†)∗a†. Firstly, multiply the
equality on the right by a, apply involution to the latest equation, and then we get
a∗a† = a†a†. By Lemma 2.2, a ∈ RPI . 2

Similarly, we have the following theorem.

Theorem 3.6. Let a ∈ R#∩R†. Then a ∈ RPI if and only if the following equation
has at least one solution in χa:

(2.2) x = (a†)∗a†x.

Using the symmetricity, we have the following corollary.

Corollary 3.7. Let a ∈ R# ∩ R†. Then a ∈ RPI if and only if the following
equation has at least one solution in χa:

(2.3) x = xa†(a†)∗.
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4. Normal EP Elements

Lemma 4.1. Let a ∈ R† and x ∈ R.
(1) If a†(a†)∗a†x = 0, then a†x = 0;
(2) If xa†(a†)∗a† = 0, then xa† = 0.

Proof. (1) Pre-multiplying the equality a†(a†)∗a†x = 0 by a∗a, we immediately
have a†x = 0.

(2) Similarly, we can prove (2). 2

Lemma 4.2. Let a ∈ R† ∩R# and x ∈ R. If a(a†)∗a†x = 0, then a†x = 0.

Proof. Since a(a†)∗ = a2a†(a†)∗, pre-multiplying the equality a(a†)∗a†x = 0 by a#,
one has (a†)∗a†x = 0. Pre-multiplying the last equality by a∗, one obtains a†x = 0.

2

Lemma 4.3. Let a ∈ R† ∩R# and x ∈ R. If x(a#)∗(a†)∗a† = 0, then x(a#)∗ = 0.
Proof. Post-multiplying x(a#)∗(a†)∗a† = 0 by aa∗, we have x(a#)∗aa† = 0. Note
that (a#)∗aa† = (a#)∗. Thus, x(a#)∗ = 0. 2

Lemma 4.4. Let a ∈ R† ∩R# and x ∈ R. If (a†)∗(a†)∗a†x = 0, then a†x = 0.
Proof. Pre-multiplying (a†)∗(a†)∗a†x = 0 by a#a∗, we have a#(a†)∗a†x = 0. Pre-
multiplying the last equation by a2, we obtain that a(a†)∗a†x = 0. By Lemma 4.2,
a†x = 0. 2

Lemma 4.5.[14, Lemma 2.3] Let a ∈ R# ∩R†. Then a ∈ REP if and only if one
of the following conditions holds:

(1)Ra† ⊆ Ra;
(2)Ra ⊆ Ra†;
(4)aR ⊆ a†R;
(6)a†R ⊆ aR;
(3)Ra# ⊆ Ra∗;
(5)Ra# ⊆ Ra†.

Lemma 4.6.[14, Lemma 2.11] Let a ∈ R# ∩R†. Then a ∈ RNEP if and only if
(a†)∗a† = a†(a†)∗.

Theorem 4.7. Let a ∈ R# ∩ R†. Then a ∈ RNEP if and only if the following
equation has at least one solution in χa:

(2.1) xa†(a†)∗ = x(a†)∗a†.

Proof. ⇒ By [11, Corollary 2.8], we know that x = a is a solution.

⇐ (1) If x = a is a solution, then aa†(a†)∗ = a(a†)∗a†. That is (a†)∗ = a(a†)∗a†.
This infers that Ra = R(a†)∗ = Ra(a†)∗a† ⊆ Ra† = Ra∗ by [11, Lemma 2.1]. It
follows from Lemma 2.5 that a ∈ REP . Moreover, post-multiplying (a†)∗ = a(a†)∗a†
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by a, we get (a†)∗a = a(a†)∗. Take involution of the last equation. It follows
a∗a† = a†a∗. By [11, Lemma 2.7], a is normal. Hence a ∈ RNEP .

(2) If x = a# is a solution, then a#a†(a†)∗ = a#(a†)∗a†. Note that (a#)0 = a0.
Then we get aa†(a†)∗ = a(a†)∗a†. Hence a ∈ RNEP by (1).

(3) If x = a† is a solution, then a†a†(a†)∗ = a†(a†)∗a†. Note that (a†)∗ =
(a†)∗a†a. Then a†(a†)∗a†(1 − a†a) = 0. By Lemma 4.1, we have a†(1 − a†a) = 0.
Then, Ra† = Ra†a†a ⊆ Ra. Thus, by Lemma 4.5, we obtain a ∈ REP and aa† =
a†a. On the other hand,

a†(a†)∗ = a†aa†(a†)∗ = aa†a†(a†)∗ = aa†(a†)∗a† = (a†)∗a†,

which shows a ∈ RNEP by Lemma 4.6.
(4) If x = a∗ is a solution, then a∗a†(a†)∗ = a∗(a†)∗a† = a†aa† = a†. Similar to

the proof of (1), a ∈ RNEP .
(5) If x = (a#)∗ is a solution, then (a#)∗a†(a†)∗ = (a#)∗(a†)∗a†. Applying

involution to it, then a†(a†)∗a# = (a†)∗a†a#. We get a†(a†)∗a = (a†)∗ because
0a =0 (a#). Similar to the proof of (1), a ∈ RNEP .

(6) If x = (a†)∗ is a solution, then (a†)∗a†(a†)∗ = (a†)∗(a†)∗a†. Taking involu-
tion of the equality, we obtain that

a†(a†)∗a† = (a†)∗a†a†.

Similar to the proof of (3), a ∈ RNEP . 2

Theorem 4.8. Let a ∈ R# ∩ R†. Then a ∈ RNEP if and only if the following
equation has at least one solution in χa:

(2.2) x(a†)∗a† = (a†)∗a†x.

Proof. ⇒ Since a ∈ RNEP , x = a is a solution.

⇐ (1) If x = a is a solution, then a(a†)∗a† = (a†)∗a†a. Post-multiplying it by
(1 − a†a), we have a(a†)∗a†(1 − a†a) = 0. By Lemma 4.2, a†(1 − a†a) = 0. Hence
a ∈ REP . It follows that

(a†)∗a† = aa†(a†)∗a† = a†a(a†)∗a† = a†(a†)∗a†a = a†(a†)∗.

Therefore, a ∈ RNEP according to Lemma 4.6.
(2) If x = a# is a solution, then a#(a†)∗a† = (a†)∗a†a#. Post-multiplying it by

(1− a†a), we get
a#(a†)∗a†(1− a†a) = 0.

By Lemma 4.2 and the proof of (1), a ∈ REP . Post-multiplying a#(a†)∗a† =
(a†)∗a†a# by a, we have a†(a†)∗ = a#(a†)∗ = (a†)∗a†. Hence a ∈ RNEP by Lemma
4.6.

(3) If x = a† is a solution, then a†(a†)∗a† = (a†)∗a†a†. Pre-multiplying it by
(1− aa†), we have

(1− aa†)a†(a†)∗a† = 0.
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By Lemma 4.1, (1 − aa†)a† = 0. Hence a ∈ REP . Then x = a# is a solution. By
(2), a ∈ RNEP .

(4) If x = a∗ is a solution, then a∗(a†)∗a† = (a†)∗a†a∗. That is a† = (a†)∗a†a∗.
Similar to the proof of (1) in Theorem 4.7, we have a ∈ RNEP .

(5) If x = (a#)∗ is a solution, then (a#)∗(a†)∗a† = (a†)∗a†(a#)∗. Pre-
multiplying it by (1− aa†), we get

(1− aa†)(a#)∗(a†)∗a† = 0.

By Lemma 4.3, (1 − aa†)(a#)∗ = 0. This gives a# = a#aa†. Therefore, a ∈ REP .
Multiplying (a#)∗(a†)∗a† = (a†)∗a†(a#)∗ on the left by a∗, we obtain that

(a†)∗a† = a†(a#)∗ = a†(a†)∗,

which implies a ∈ RNEP by Lemma 4.6.
(6) If x = (a†)∗ is a solution, then (a†)∗(a†)∗a† = (a†)∗a†(a†)∗. Post-multiplying

it by (1− a†a), we have (a†)∗(a†)∗a†(1− a†a) = 0. By Lemma 4.4, we obtain that
a†(1− a†a) = 0, which yields a ∈ REP . Therefore, x = (a#)∗ is a solution. By (5),
a ∈ RNEP . 2

5. Strongly EP elements

Theorem 5.1. Let a ∈ R# ∩ R†. Then a ∈ RSEP if and only if the following
equation has at least one solution in χa:

(2.1) x = (a#)∗xa#.

Proof. ⇒ Note that a# = a† = a∗ since a ∈ RSEP . Hence x = a∗ is a solution.

⇐ (1) If x = a is a solution, then a = (a#)∗aa#. Post-multiplying the equality
by a, one gets a2 = (a#)∗a. Hence

a2a† = (a#)∗aa† = (a#)∗,

which leads to a# = aa†a∗. Then we have Ra# = Raa†a∗ ⊆ Ra∗. Thus, a ∈ REP

by Lemma 4.5. Then, we get a† = a∗, which implies a ∈ RPI . Hence a ∈ RSEP .
(2) If x = a# is a solution, then a# = (a#)∗a#a#. Multiplying the equality by

a2 from the right, one obtains a = (a#)∗aa#. By the proof of (1), we get a ∈ RSEP .
(3) If x = a† is a solution, then a† = (a#)∗a†a#. Multiplying the equality by

a†a from the right, we have

a†a†a = (a#)∗a†a#a†a = (a#)∗a†a# = a†.

Then, Ra† = Ra†a†a ⊆ Ra. Thus, by Lemma 4.5, we obtain a ∈ REP , which gives
x = a† = a#. By (2), a ∈ RSEP .
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(4) If x = a∗ is a solution, then a∗ = (a#)∗a∗a#. We can deduce that

a∗a†a = (a#)∗a∗a#a†a = (a#)∗a∗a# = a∗.

Applying the involution to the equality, one has a = a†a2. Thus, we get aR =
a†a2R ⊆ a†R, which implies a ∈ REP by Lemma 4.5. Then, we find that

a∗ = (a#)∗a∗a# = (a†)∗a∗a# = aa†a# = a#,

which gives a ∈ RSEP .
(5) If x = (a#)∗ is a solution, then (a#)∗ = (a#)∗(a#)∗a#. Hence we deduce

that
a∗ = a∗a∗(a#)∗ = a∗a∗(a#)∗(a#)∗a# = (a#)∗a∗a#.

By (4), we get a ∈ RSEP .
(6) If x = (a†)∗ is a solution, then (a†)∗ = (a#)∗(a†)∗a#. Applying involution

to the equality, we have a† = (a#)∗a†a#. By (3), a ∈ RSEP . 2

Theorem 5.2. Let a ∈ R# ∩ R†. Then a ∈ RSEP if and only if the following
equation has at least one solution in χa:

(2.2) xa†a = x(a†)∗a†.

Proof. ⇒ Obviously x = a is a solution since a∗ = a† = a#.
⇐ (1) If x = a is a solution, then a = aa†a = a(a†)∗a†. Hence

Ra = Ra(a†)∗a† ⊆ Ra†.

By Lemma 4.5, a ∈ REP . Post-multiplying a = a(a†)∗a† by a, we get a2 = a(a†)∗.
Thus a∗ = a† by Lemma 3.4, which implies a ∈ RSEP .

(2) If x = a# is a solution, then a# = a#a†a = a#(a†)∗a†. Pre-multiplying the
equality by a2, we have a = a(a†)∗a†. By (1), a ∈ RSEP .

(3) If x = a† is a solution, then a†a†a = a†(a†)∗a†. Note that (a†)0 = (a∗)0.
Then we get a∗a†a = a†. Therefore a ∈ RSEP by [7, Theorem 2.3].

(4) If x = a∗ is a solution, then a∗a†a = a∗(a†)∗a† = a†. This gives a†(1−a†a) =
0, so a ∈ REP . Post-multiplying a∗a†a = a† by a†, we get a∗a† = a†a†. Then we
obtain that a ∈ RSEP by Lemma 2.2.

(5) If x = (a#)∗ is a solution, then (a#)∗a†a = (a#)∗(a†)∗a†. Taking involution
of the equality, we deduce that

a†aa# = (a†)∗a†a#.

This implies a†aa = (a†)∗a†a = (a†)∗ because 0(a#) = 0a. Hence a∗a†a = a†, which
infers a ∈ RSEP by [7, Theorem 2.3].

(6) If x = (a†)∗ is a solution, then (a†)∗ = (a†)∗a†a = (a†)∗(a†)∗a†. Post-
multiplying the equality (a†)∗ = (a†)∗(a†)∗a† by (1−aa†), we have (a†)∗(1−aa†) = 0
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which implies a† = aa†a†. Hence a ∈ REP . Post-multiplying (a†)∗ = (a†)∗(a†)∗a†

by a, we get (a†)∗a = (a†)∗(a†)∗. Applying involution to the equality, we obtain
that a∗a† = a†a†. Therefore, a ∈ RSEP according to Lemma 2.2. 2

Theorem 5.3. Let a ∈ R# ∩ R†. Then a ∈ RSEP if and only if the following
equation has at least one solution in χa:

(2.3) (a†)∗xa† = xa†a.

Proof. ⇒ x = a is a solution since a† = a∗ = a#.
⇐ (1) If x = a is a solution, then (a†)∗aa† = aa†a = a. Hence Ra =

R(a†)∗aa† ⊆ Ra†. By Lemma 4.5, a ∈ REP . Post-multiplying (a†)∗aa† = a
by a, we obtain that (a†)∗a = a2. Per-multiplying the equation by a∗, we get
a†a2 = a∗a2. Post-multiplying the last equation by a#a†, we obtain a† = a∗.
Therefore a ∈ RSEP .

(2) If x = a# is a solution, then (a†)∗a#a† = a#a†a = a#. Observe that

Ra# = R(a†)∗a#a† ⊆ Ra†.

This implies that a ∈ REP by Lemma 4.5. Then, we can obtain (a†)∗a†a# = a#.
Since 0(a) = 0(a#), we get (a†)∗a†a = a. That is (a†)∗ = a. Therefore, a ∈ RSEP .

(3) If x = a† is a solution, then (a†)∗a†a† = a†a†a. Taking involution of the
equality, we have (a†)∗(a†)∗a† = a†a(a†)∗. Pre-multiplying the last equality by
(1− a†a), we have

(1− a†a)(a†)∗(a†)∗a† = 0.

Post-multiplying by aa∗, we get (1− a†a)(a†)∗aa† = 0, it is immediate that

(1−a†a)(a†)∗ = (1−a†a)(a†)∗a†a = (1−a†a)(a†)∗a†a2a†a#a = (1−a†a)(a†)∗aa†a#a = 0.

Hence a ∈ REP . On the other hand, pre-multiply (a†)∗a†a† = a†a†a by a∗, and we
obtain that a†a† = a∗a†, which implies a ∈ RSEP by Lemma 2.2.

(4) If x = a∗ is a solution, then (a†)∗a∗a† = a∗a†a. Taking involution of the
equality, we get (a†)∗aa† = a†a2. Hence we obtain that

Ra = Ra#a2 = Ra#aa†a2 ⊆ Ra†a2 = R(a†)∗aa† ⊆ Ra†.

Therefore a ∈ REP by Lemma 4.5. Post-multiplying (a†)∗aa† = a†a2 by a, we have
(a†)∗a = a2. Then we deduce that a∗ = a† by the proof of (1). Therefore a ∈ RSEP .

(5) If x = (a#)∗ is a solution, then (a†)∗(a#)∗a† = (a#)∗a†a. Applying involu-
tion to it, we get (a†)∗a#a† = a†aa#. Post-multiplying the last equality by aa†, we
obtain that (a†)∗a#a† = a†. Then, by [11, Lemma 2.1] we know that

a†R = (a†)∗a#a†R ⊆ (a†)∗R = aR.

By Lemma 4.5, a ∈ REP . Post-multiplying (a†)∗a#a† = a† by a3, we get (a†)∗a =
a2. From Lemma 3.4, we deduce that a∗ = a†, which implies a ∈ RSEP .
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(6) If x = (a†)∗ is a solution, then (a†)∗(a†)∗a† = (a†)∗a†a. By Theorem 5.2
(6), a ∈ RSEP . 2

Theorem 5.4. Let a ∈ R# ∩ R†. Then a ∈ RSEP if and only if the following
equation has at least one solution in χa:

(2.4) a†x(a†)∗ = xaa†.

Proof. ⇒ x = a∗ is a solution since a† = a∗ = a#.
⇐ (1) If x = a is a solution, then a†a(a†)∗ = a2a†. Taking involution of

the equality, we have a†a†a = aa†a∗. By [14, Theorem 2.15] (3), we deduce that
a ∈ RSEP .

(2) If x = a# is a solution, then a†a#(a†)∗ = a#aa†. Pre-multiplying the
equality by a, we get a#(a†)∗ = aa†. Taking involution of the last equality and
then post-multiplying the obtained equality by a, we obtain that a†(a#)∗a = a. It
is evident that

aR = a†(a#)∗aR ⊆ a†R,

which shows a ∈ REP by Lemma 4.5. Furthermore, post-multiply a#(a†)∗ = aa†

by a∗ and thus we get a† = a∗. Hence a ∈ RSEP .
(3) If x = a† is a solution, then a†a†(a†)∗ = a†aa† = a†. Similar to the proof of

Theorem 5.1 (3), we deduce that a ∈ RSEP .
(4) If x = a∗ is a solution, then a†a∗(a†)∗ = a∗aa† = a∗. Similar to the proof

of Theorem 5.3 (1), we get a ∈ RSEP .
(5) If x = (a#)∗ is a solution, then a†(a#)∗(a†)∗ = (a#)∗aa†. Taking involution

of the equality, we get a†a#(a†)∗ = aa†a# = a#. Similar to the proof of Theorem
5.1 (2), we have a ∈ RSEP .

(6) If x = (a†)∗ is a solution, then a†(a†)∗(a†)∗ = (a†)∗aa†. Similar to the proof
of Theorem 5.3 (3), we know that a ∈ RSEP . 2
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[9] D. Mosić, D. S. Djordjević, J. J. Koliha, EP elements in rings, Linear Algebra Appl.,
431(2009), 527–535.

[10] R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc.,
51(1955), 406-413.

[11] Y. C. Qu, J. C. Wei and H. Yao, Characterizations of normal elements in ring with
involution, Acta. Math. Hungar., 156(2)(2018), 459–464.

[12] S. Z. Xu, J. L. Chen and J. Benitez, EP elements in rings with involution, Bull.
Malay. Math. Soc. Ser., 42(2019), 3409–3426.

[13] Z. C. Xu, R. J. Tang and J. C. Wei, Strongly EP elements in a ring with involution,
Filomat, 34(6)(2020), 2101–2107.

[14] R. J. Zhao, H. Yao and J. C. Wei, Characterizations of partial isometries and two
special kinds of EP elements, Czechoslovak Math. J., 70(2020), 539–551.

[15] D. D. Zhao and J. C. Wei, Strongly EP elements in rings with involution, J. Algebra
Appl., 21(5)(2022), 2250088.


