DOI QR코드

DOI QR Code

Strong Convergence of a Bregman Projection Method for the Solution of Pseudomonotone Equilibrium Problems in Banach Spaces

  • Received : 2021.11.01
  • Accepted : 2022.11.15
  • Published : 2024.03.31

Abstract

In this paper, we introduce an inertial self-adaptive projection method using Bregman distance techniques for solving pseudomonotone equilibrium problems in reflexive Banach spaces. The algorithm requires only one projection onto the feasible set without any Lipschitz-like condition on the bifunction. Using this method, a strong convergence theorem is proved under some mild conditions. Furthermore, we include numerical experiments to illustrate the behaviour of the new algorithm with respect to the Bregman function and other algorithms in the literature.

Keywords

Acknowledgement

We will like to thank the anonymous referee whose constructive criticism of the manuscript in its first draft has helped improve the quality of the article.

References

  1. H. H. Bauschke, J. M. Borwein and P. L. Combettes, Essential smoothness, essential strict convexity and Legendre functions in Banach spaces, Commun. Contemp. Math., 3(2001), 615-647. https://doi.org/10.1142/S0219199701000524
  2. A. Beck, First-Order Methods in Optimization, Society for Industrial and Applied Mathematics, Philadelphia, (2017).
  3. G. Bigi, M. Castellani, M. Pappalardo and M. Passacantando, Existence and solution methods for equilibria, Eur. J .Oper. Res., 227(1)(2013), 1-11. https://doi.org/10.1016/j.ejor.2012.11.037
  4. E. Blum and W. Oetlli, From optimization and variational inequalities to equilibrium problems, Math. Student, 63(1994), 123-145.
  5. L. M. Bregman, The relaxation method for finding common points of convex sets and its application to the solution of problems in convex programming, USSR Comput. Math. Math. Phys., 7(3)(1967), 200-217. https://doi.org/10.1016/0041-5553(67)90040-7
  6. D. Butnariu and E. Resmerita, Bregman distances, totally convex functions and a method for solving operator equations in banach spaces, Abstr. Appl. Anal., 2006(2006), 1-39.
  7. D. Butnariu, Y. Censor and S. Reich, Iterating averaging of entropic projections for solving stochastic convex feasibility problems, Comput. Optim. Appl., 8(1)(1997), 21-39. https://doi.org/10.1023/A:1008654413997
  8. D. Butnariu, A. N. Iusem and C. Zalinescu, On uniform convexity, total convexity and convergence of the proximal point and outer Bregman projection algorithms in Banach spaces, J. Convex Anal., 10(1)(2003), 35-61.
  9. D.Butnariu and A. N. Iusem, Totally convex functions for fixed points computation and infinite dimensional optimization, Kluwer Academic Publishers, Dordrecht(2000).
  10. V. H. Dang, Convergence analysis of a new algorithm for strongly pseudomontone equilibrium problems, Numer. Algorithms, 77(2018), 983-1001. https://doi.org/10.1007/s11075-017-0350-9
  11. V. H. Dang, New inertial algorithm for a class of equilibrium problems, Numer. Algorithms, 80(2019), 1413-1436. https://doi.org/10.1007/s11075-018-0532-0
  12. B. V. Dinh and L. D. Muu, A projection algorithm for solving pseudo-monotone equilibrium problems and it's application to a class of bilevel equilibria, Optimization, 64(2015), 559-575.
  13. P. M. Duc, L. D. Muu and N. V. Quy, Solution-existence and algorithms with their convergence rate for strongly pseudo-monotone equilibrium problems, Pac. J. Optim., 12(2016), 833-845.
  14. G. M. Eskandani, M. Raeisi and T. M. Rassias, A hybrid extragradient method for solving pseudomontone equilibrium problems using bregman distance, J. Fixed Point Theory Appl., 20(2018), 27.
  15. K. Fan, A minimax inequality and applications, Academic Press, New York, 1972.
  16. G. Fichera, Sul problema elastostatico di Signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat., 34(1963), 138-142.
  17. A. Gibali, A new bregman projection method for solving variational inequalities in Hilbert spaces, Pure Appl. Funct. Anal., 3(3)(2018), 403-415.
  18. J. P. Gossez and E. L. Dozo, Some geometric properties related to the fixed point theory for nonexpansive mappings, Pacific J. Math., 40(3)(1972), 565-573. https://doi.org/10.2140/pjm.1972.40.565
  19. D. V. Hieu, An inertial-like proximal algorithm for equilibrium problems, Math. Methods Oper. Res., 88(2018), 399-415.
  20. D. V. Hieu, Convergence analysis of a new algorithm for strongly pseudomontone equilibrium problems, Numer. Algorithms, 77(2018), 983-1001. https://doi.org/10.1007/s11075-017-0350-9
  21. D. V. Hieu and P. Cholamjiak, Modified extragradient method with bregman distance for variational inequalities, Appl. Anal., 101(2020), 655-670.
  22. D. V. Hieu, New inertial algorithm for a class of equilibrium problems, Numer. Algorithms, 80(2018), 1-24.
  23. D. V. Hieu, New extragradient method for a class of equilibrium problems, App. Anal., 97(5)(2018), 811-824. https://doi.org/10.1080/00036811.2017.1292350
  24. L. O. Jolaoso, F. U. Ogbuisi and O. T. Mewomo, An iterative method for solving minimization, variational inequality and fixed point problems in reflexive Banach spaces, Adv. Pure Appl. Math., 9(3)(2018), 167-184. https://doi.org/10.1515/apam-2017-0037
  25. Y. Y. Huang, J. C. Jeng, T. Y. Kuo, and C. C. Hong, Fixed point and weak convergence theorems for point dependent λ-hybrid mappings in banach spaces, Fixed Point Theory Appl., 2011(2011), 105.
  26. Yu. V. Malistky and V. V. Semenov, An extragradient algorithm for monotone variational inequalities, Cybernet. Systems Anal., 50(2014), 271-277. https://doi.org/10.1007/s10559-014-9614-8
  27. A. Moudafi and M. Oliny, Convergence of a splitting inertial proximal method for monotone operators, J. Comput. Appl. Math., 155(2003), 447-454. https://doi.org/10.1016/S0377-0427(02)00906-8
  28. Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73(1967), 591-597. https://doi.org/10.1090/S0002-9904-1967-11761-0
  29. R. R. Phelps, Convex Functions. monotone operators and differentiability, Lecture Notes in Mathematics, Berlin(1993).
  30. B. T. Polyak, Some methods of speeding up the convergence of iteration methods, U.S.S.R Comput. Math. Math. Phys., 4(5)(1964), 1-17. https://doi.org/10.1016/0041-5553(64)90137-5
  31. T. D. Quoc, L. D. Muu and N. V. Hien, Extragradient algorithms extended to equilibrium problems, Optimization, 57(2008), 749-776. https://doi.org/10.1080/02331930601122876
  32. H. Rehman, P. Kumam, Y. -J. Cho, Y. I. Suleiman and W. Kumam, Modified popov's explicit iterative algorithms for solving pseudomonotone equilibrium problems, Optim. Meth. Softw., 36(2020), 82-113.
  33. S. Reich and S. Sabach, A strong convergence theorem for a proximal-type algorithm in reflexive banach spaces, J. Nonlinear Convex Anal., 10(2009), 471-485.
  34. S. Reich and S. Sabach, Two strong convergence theorems for a proximal method in reflexive banach spaces, Numer. Funct. Anal. Optim., 31(2010), 24-44.
  35. G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, C. R. Acad. Sci. Paris, 258(1964), 4413-4416.