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Abstract.

The filled function method is useful in solving unconstrained global optimization prob-

lems. However, depending on the type of function, and parameters used, there are limi-

tations that cause difficultiies in implemenations. Exponential and logarithmic functions

lead to the overflow effect, requiring iterative adjustment of the parameters. This paper

proposes a polynomial-filled function that has a general form, is non-exponential, non-

logarithmic, non-parameteric, and continuously differentiable. With this newly proposed

filled function, the aforementioned shortcomings of the filled function method can be over-

come. To confirm the superiority of the proposed filled function algorithm, we apply it

to a set of unconstrained global optimization problems. The data derived by numerical

implementation shows that the proposed filled function can be used as an alternative al-

gorithm when solving unconstrained global optimization problems.

1. Introduction

The filled function method was introduced in [6] in 1993; it was introduced
to correct the limitations faced by many traditional methods, such as the tunnel-
ing function method, the covering method, and the branch and bound method. A
filled function works algorithmically to move from one local minimum point to a
lower local minimum point through three main steps. First, the objective function
is minimized. Second, a new function, called the filled function, is built at the
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local minimum point found in Step 1 , and local minimum of it is found. Third,
the local minimum point of the filled function found in Step 2 is used as an ini-
tial point to minimize the objective function. The capability of the filled function
algorithm broke with the notion that solving unconstrained global optimization
problems should always involve the use of a multi-start approach or a partitioning
method in the search domain. However, along with the development of the method,
the use of exponentials and parameters in the filled function [16, 17, 14, 7] led to
many unexpected issues.

A filled function involving an exponential function approaches infinity rapidly;
this causes the the overflow effect. This phenomenon makes the graph of the filled
function almost the same as its tangent line. Thus, the local minimum point of the
filled function is essentially a pseudo-minimizer. The rationale behind the use of
exponential or logarithmic functions is the stretching effect of these two functions,
especially in the region χ1 (x

∗) = {x ∈ χ : g (x) ≥ g (x∗)} \ {x∗}, where g(x) is a
cost function, x∗ is a local minimum point of g(x) in χ, and χ is an operation
domain. By this effect, the cost function g(x) has no local minimum points in
χ1 (x

∗). As a result, many filled functions still employ either an exponential term
or a logarithmic function.

On the other hand, the use of parameters is aimed at enabling the constructed
filled function to meet three conditions stated in the definition of the filled function.
The first condition states that if the filled function is built at a local minimum point
x∗ of a cost function g(x), then the filled function attains its local maximum at x∗.
The second condition asserts that for all χ1 (x

∗), x is not a stationary nor a saddle
point of the filled function constructed at x∗. The last condition requires that if
the filled function is created at x∗, and x∗ is not a global minimum, then the set
χ2 (x

∗) = {x ∈ χ : g (x) < g (x∗)} contains at least one local minimum point of the
filled function.

Parametric-filled functions were studied in [15, 5, 3]. Though the parameters
add some difficulty, the advantages that can provide in computational performance
in the implementation phase, means that they should not be ignored. For instance,
the filled function formulated by [3] utilized an inverse trigonometric function to
eliminate the overflow effect produced by using exponential functions. Filled func-
tions constructed to have a general form were studied in [7, 4, 9, 19]. Having a
general form, allows a variety of functions to be used to solve optimization prob-
lems.However, it introduces the challenge of determining parameter values during
the computational stage.

From previous discussions, we tentatively concluded that parameters should be
eliminated for the filled function method to be superior. Such efforts were first
attempted by [2]. The idea was to select a different function on sets χ1 (x

∗) and
χ2 (x

∗). In χ1 (x
∗), the function is made independent from the cost function and

a descent function. Thus, the local minimum points in χ1 (x
∗) are all eliminated

when minimizing the filled function. On the other hand, in the set χ2 (x
∗), the

property of the formed filled function is influenced by the cost function. An’s filled
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function was defined as follows:

(1.1) ω1 (x, x
∗) = −sign (g (x)− g (x∗)) ∥x− x∗∥2,

where

sign (ℓ) =

{
1, ℓ ≥ 0
−1, ℓ < 0

.

From (1.1), ω1 (x, x
∗) is discontinuous at points where g (x) = g (x∗). However,

this property limits the kind of local minimization procedure one can use on the
filled function. If a non-gradient based methodology is implemented, such a prop-
erty becomes beneficial. However, such a method requires a high computational
effort. Another problem arises from ∥x− x∗∥2. The norm causes the function
value to increase uncontrollably (overflow). This undesirable effect is then reduced

by changing ∥x− x∗∥2 into arctan
(
∥x− x∗∥2

)
by [10]. To increase the number

of local minimization methods that can be employed, the authors in [8] offered a
continuously differentiable filled function defined as follows:

(1.2) ω2 (x, x
∗) = −∥x− x∗∥2β (g (x)− g (x∗))

where

β (s) =

{
1 s ≥ 0

−es
2+2 s < 0

.

However, an exponential function is still involved in (1.2). Therefore, the undesired
characteristic previously discussed can possibly occur during the computational
stage. The author of [1] attempted to present a new type of parameter filled function
as follows:

(1.3) ω3 (x, x
∗) =

1

1 + ∥x− x∗∥2
β (g (x)− g (x∗))

where

β (s) =

{ π/2 s ≥ 0
π/2− arctan

(
s2
)

s < 0
.

However, in our analysis, the following term

1

1 + ∥x− x∗∥2

in (1.3) has almost the same effect as the exponential function, i.e., the change in
value is as fast as that in the exponential function.

We propose a new polynomial-filled function to accommodate the need for an
effective and efficient parameter-free filled function algorithm. The proposed filled
function is simple, does not involve any parameters, and is continuously differen-
tiable. The proposed filled function will be formed in a general form. The filled
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function was constructed with a polynomial form because polynomial functions are
simpler than other filled functions, which generally use exponential, logarithmic, in-
verse trigonometric, or other transcendental functions. Consequently, the proposed
algorithm, where one of the phases involves filled functions, is expected to become
more efficient than other filled function algorithms.

This paper is organized as follows. Section 2 provides the preliminaries, assump-
tions, and definitions involved in this study. Section 3 introduces a new parameter-
free polynomial-filled function and its analytical properties. Section 4 discusses
a global minimum algorithm, where the proposed polynomial-filled function is in-
volved in one of the algorithm steps. Section 5 presents the numerical experiments
and comparisons with some recently filled function algorithms. Finally, Section 6
offers conclusions drawn from the study.

2. Preliminaries

The unconstrained global optimization problems solved in this article should
have a solution, i.e., the global minimum value of the cost function. As the problem
is unconstrained, the global minimum point must be found in Rn. However, from
the numerical point of view, yielding a global minimum value in Rn is impossible.
To guarantee the existence of a global minimum point, we assumed that the cost
function g(x) is coercive, that is:

lim
∥x∥→+∞

g (x) = +∞.

The coercive property of g(x) implies the existence of a closed bounded set χ exists,
such that χ = χ1 ∪ χ2 ∪ {x∗}, with

χ1 = {x ∈ χ : g (x) ≥ g (x∗)} \ {x∗}

and
χ2 = {x ∈ χ : g (x) < g (x∗)} ,

where x∗ is a local minimum point of g(x). Therefore, the unconstrained global
optimization displayed in Problem 1 could be transformed into Problem 2.

Problem 1. Minimize cost function g(x), where x ∈ Rn.

Problem 2. Minimize cost function g(x), where x ∈ χ.

In conclusion, Problems (1) and (2) are equivalent, and the global solution of Prob-
lem (2) can be considered the global solution in Rn.

In this paper, g(x) possibly has infinite local minimum points but only finite
local minimum points that have different values. The cost function g(x) is a first-
order and continuously differentiable function. There are various definition of filled
functions in the literature. We use the following.
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Definition 1. [18]. A real valued function ω (x, x∗) is a filled function of a cost
function g(x) at x∗, where x∗ is a local minimum point of g(x) in χ if it satisfies
the following properties.

1. The point x∗ is a strict local maximum point of ω (x, x∗).

2. If x ∈ χ1, then x is not the stationary point of ω (x, x∗).

3. If χ2 ̸= ∅, then a local minimum point x′ of ω (x, x∗) exists in χ2.

3. New Filled Function and Its Properties

The parameter-free, continuously differentiable filled functions considered in [8],
[11], and [12], give several idea for creating filled functions as defined in the previous
section. One idea is that the filled function should be a piecewise function, allowing
one to select a function, such as−∥x− x∗∥n where n ≥ 1 is an integer, with a descent
direction property in the region χ1. As the polynomial-filled function formed in this
study is intended to be continuously differentiable, one would consider only even
values of n. The next task is to find other functions. However, the selected functions
ensure that the formed filled function is continuous at x, where g (x) = g (x∗). For
example, −s+ 1, s2 + 1, −s2n+1 + s2n + 1, with n ≥ 1. This rationale was used to
create the polynomial-filled function

(3.1) ω (x, x∗) = ℓ1 (∥x− x∗∥α) ℓ2 (g (x)− g (x∗))

where α is an even integer, such that α ≥ 2, and ℓ2 : R → R is a single real valued
function with ℓ2 (s) = 1 for s ≥ 0 and ℓ2 (s) = λ (s) for s < 0. The condition
on α will make ω (x, x∗) continuously differentiable. Therefore, we obtained the
following:

ω (x, x∗) = ℓ1 (∥x− x∗∥α) ,

for all x ∈ χ1, and

ω (x, x∗) = ℓ1 (∥x− x∗∥α)λ (g (x)− g (x∗)) ,

for all x ∈ χ2.
To build a specific general function (3.1), functions ℓ1 and λ should satisfy some
properties:

1. ℓ1 (s) and λ (s) are polynomial functions.

2. ℓ1 is continuously differentiable.

3. ℓ1 (0) = 0.

4. ℓ1 (s) < 0 for all s ∈ (0,∞).

5. ℓ′1 (s) ≤ 0 in [0,∞).
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6. λ is continuously differentiable in (−∞, 0).

7. λ (s) > 1 for all s ∈ (−∞, 0).

8. λ′ (s) < 0 at s ∈ (−∞, 0).

9. lim
s→0−

λ (s) = 1.

We need to prove that the function in (3.1) satisfies the three properties in
Definition (1).

Theorem 1. Point x∗, which is the local minimum point of g(x), is a strict local
maximum point of ω (x, x∗).

Proof. x∗ is a local minimum point of g(x), which implies the existence of an open
ball B (x∗, σ), such that g (x) ≥ g (x∗) for all x ∈ B (x∗, σ)∩χ. Since g (x) ≥ g (x∗),
then for all x ∈ B (x∗, σ) ⊂ χ1, the value of the polynomial-filled function is as
follows

ω (x, x∗) = ℓ1 (∥x− x∗∥α) .

Given ∥x− x∗∥α > 0 and from property (4), the following is obtained:

ω (x, x∗) = ℓ1 (∥x− x∗∥α) < 0.

From Property (3) of ℓ1, we determined the following:

ω (x∗, x∗) = ℓ1 (∥x∗ − x∗∥α) = 0.

Hence,
ω (x, x∗) < ω (x∗, x∗) ,

for all x ∈ B (x∗, σ) ∩ χ. Therefore, x∗ is a strict local maximum point of ω (x, x∗)
in χ.

The minimization process of the filled function in the filled function algorithm
requires x∗ to be at the top of the basin of attraction of ω (x, x∗). Theorem 1 proves
this property. The next two theorems are provided to show that ω (x, x∗) has no
stationary point in χ. Theorem 2 is a necessary condition for a filled function to
have no stationary points.

Theorem 2. Assume that (1) x∗ is a local minimum point of g(x), (2) xM and
xN are elements of χ1, and (3)

∥∥xM − x∗
∥∥ <

∥∥xN − x∗
∥∥. Then,

ω
(
xN , x∗) < ω

(
xM , x∗) .

Proof. As xM and xN are elements of χ1, g
(
xM

)
≥ g (x∗) and g

(
xN

)
≥ g (x∗),

respectively. From the definition of the proposed filled function,

ω
(
xM , x∗) = ℓ1

(∥∥xM − x∗∥∥α)



Polynomial-Filled Function Algorithm 101

and
ω
(
xN , x∗) = ℓ1

(∥∥xN − x∗∥∥α) .

The difference between the value of ω at xM and xN is as follows:

ω
(
xN , x∗)− ω

(
xM , x∗) = ℓ1

(∥∥xN − x∗∥∥α)− ℓ1

(∥∥xM − x∗∥∥α) .

From properties (4) and (5) of ℓ1, function ℓ1 is decreasing, and the value is neg-
ative. Moreover, from the assumption of the theorem,

∥∥xM − x∗
∥∥ <

∥∥xN − x∗
∥∥.

Therefore, the following inequality holds:

ℓ1

(∥∥xN − x∗∥∥α) < ℓ1

(∥∥xM − x∗∥∥α) .

Hence, the consequence is ω
(
xN , x∗) < ω

(
xM , x∗). This condition proves the

theorem.

Theorem 2 reveals that the proposed filled function is a descent territory in χ1,
and it is needed because the filled function algorithm minimizes ω. However, some
local minimization procedures require a zero gradient. Hence, the proposed filled
function should not have any stationary points in χ1.

Theorem 3. If x∗ is a local minimum point of g(x), then χ1 does not contain the
stationary points of ω (x, x∗).

Proof. Assuming that xM ∈ χ1, the following can be obtained:

dT∇ω
(
xM , x∗) < 0.

As xM ∈ χ1, then g
(
xM

)
≥ g (x∗). Therefore, the value of ω at xM is as follows:

ω
(
xM , x∗) = ℓ1

(∥∥xM − x∗∥∥α) .

The gradient of ω at xM is given by the following:

∇ω
(
xM , x∗) = αℓ′1

(∥∥xM − x∗∥∥α)∥∥xM − x∗∥∥α−2 (
xM − x∗) .

Given that x∗ is the element of interior of χ, d =
(
xM − x∗) is a feasible direction.

The directional derivative of ω at xM is computed as follows:

dT∇ω
(
xM , x∗) = αℓ′1

(∥∥xM − x∗∥∥α)∥∥xM − x∗∥∥α.
As α ≥ 2,

∥∥xM − x∗
∥∥α > 0, and from property (5) of ℓ1, the following is achieved:

ℓ′1

(∥∥xM − x∗∥∥α) < 0.

Thus, dT∇ω
(
xM , x∗) < 0. This result proves the theorem.
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Thus far, Theorems 1-3 have proven that the proposed filled function satisfies
the first and second axioms required by Definition 1.

Theorem 4. Assume that x∗ is a local minimum point of g(x). If χ2 ̸= ∅, then
ω (x, x∗) has a local minimum point in χ2.

Proof. Assume that χ̄2 = {x ∈ χ : g (x) ≤ g (x∗)}. As χ̄2 ⊂ χ, then χ̄2 is bounded.
Hence, χ̄2 is a compact and non-empty set. From the form of the proposed filled
function, Equation (3.1) is continuously differentiable. From the Weirstrass theo-
rem, ω (x, x∗) has a local minimum point x̃∗ ∈ χ̄2. The proposed filled function
ω (x, x∗) is differentiable at x̃∗. Thus, x̃∗ is a stationary point of ω (x, x∗). On the
other hand, ∇ω (x̃∗, x∗) = 0. From Theorems 2 - 3, ω (x, x∗) does not have sta-
tionary points in the region, such that g (x) = g (x∗), and χ2 is non-empty. Thus,
x̃∗ ∈ χ̄2.

Theorem 4 proves that ω (x, x∗) satisfies the last condition of Definition 1. These
theorems guarantee that the global minimum algorithm can be performed. The
following theorem is given as an additional property of the proposed filled function
(3.1).

Theorem 5. Assume that x∗ is a local minimum point of g(x). If xN ∈ χ1 and
xM ∈ χ2, such that

∥∥xN − x∗
∥∥ <

∥∥xM − x∗
∥∥, then ω

(
xM , x∗) < ω

(
xN , x∗).

Proof. As xN ∈ χ1, the value of the polynomial-filled function is defined as follows:

ω
(
xN , x∗) = ℓ1

(∥∥xN − x∗∥∥α) .

On the other hand, as xM ∈ χ2, based on (3.1), the value of the polynomial-filled
function at xM is given as follows:

ω
(
xM , x∗) = ℓ1

(∥∥xM − x∗∥∥α)λ
(
g
(
xM

)
− g (x∗)

)
.

Given that xM ∈ χ2, then g
(
xM

)
− g (x∗) < 0. Based on the properties of

λ, λ
(
g
(
xM

)
− g (x∗)

)
> 1 for all xM . Properties (4) and (5) of ℓ1 reveal that

ℓ1
(∥∥xM − x∗

∥∥α) is negative and strictly decreasing. With∥∥xN − x∗∥∥ <
∥∥xM − x∗∥∥ ,

the following can be obtained:

ℓ1

(∥∥xM − x∗∥∥α) < ℓ1

(∥∥xN − x∗∥∥α) .

From Equation (4), α ≥ 2. Therefore, we have the following:

ℓ1

(∥∥xM − x∗∥∥α)λ
(
g
(
xM

)
− g (x∗)

)
< ℓ1

(∥∥xN − x∗∥∥α) .

Thus, ω
(
xM , x∗) < ω

(
xN , x∗).
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4. Filled Function Algorithm

This section focuses on the global minimum algorithm. The following algorithm
will be employed to solve the given global optimization problems in this paper.

Poly-ffm Algorithm

Step 1. This step is intended to select a certain quantity. First, the initial point x0

is selected from the feasible domain χ. Second, a small real number τ , which
is usually 0 < τ < 1, is obtained. Third, set l = 1.

Step 2. This phase minimizes the cost function g(x) by any local minimum proce-
dure. In our study, the BFGS method was employed. This method, which is
based on the literature, has a high efficiency. In this step, it yields the first
local minimum point x∗.

Step 3. The local minimum point x∗ yielded in Step 2 is employed to create the initial
point to minimize the proposed filled function, i.e., xi

l, with i = 1, 2, . . . , p,
where p ≥ 2n, and n is the number of dimension of the cost function. The
initial points are formed as xi

l = x∗ + τei, and ei is the coordinate direction.

Step 4. The value of i starts from 1.

Step 5. In this step, if i ≤ p, then the algorithm will proceed to Step 6. If all values of
i have been used to minimize g(x) using the initial points xi

l = x∗ + τei, but
no better local minimum point of g(x) has been obtained, then the algorithm
will be terminated, and x∗ will be considered as the global minimum point
of g(x) in χ.

Step 6. The initial point xi
l will be examined in this step. If xi

l is contained in χ,
then the algorithm proceeds to Step 7. However, if xi

l is outside the set χ,
then we let i = i+ 1, and the algorithm proceeds to Step 5.

Step 7. In this step, the proposed filled function is constructed at x∗:

ω (x, x∗) = ℓ1 (∥x− x∗∥α) ℓ2 (g (x)− g (x∗)) .

Step 8. The minimization process of the proposed filled function ω (x, x∗) is carried
out in this step using the initial points xi

l = x∗ + τei. The local minimum of
ω (x, x∗) obtained is denoted by x′.
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Step 9. This step examines the local minimum point x′. If x′ is contained in χ, and
g (x′) < g (x∗), then we set l = l + 1, x0 = x′, and the algorithm will return
to Step 2. However, if these two conditions do not satisfy the conditions, we
set i = i+ 1 and proceed to Step 5.

5. Numerical Experiment

As the proposed filled function is in general form, in the implementation, we
used one of the specific filled functions, which can be categorized as Equation (4),
as follows:

ω (x, x∗) = −∥x− x∗∥2ℓ2 (g (x)− g (x∗)) ,

where

ℓ2 (s) =

{
1 s ≥ 0
−s+ 1 s < 0

.

The nine steps of Poly-ffm algorithm were implemented to solve the benchmark
unconstrained global optimization problems as follows:

Probem 1: Three-hump back camel function

g (x) = −1.05x4
1 + 2x2

1 +
1

6
x6
1 − x1x2 + x2

2.

This cost function is minimized in the interior of the box:

−3 ≤ xj ≤ 3,

where j = 1, 2. This cost function has a single global minimum point at x∗ = (0, 0).
Its global minimum value is g (x∗) = 0.

Probem 2: Six-hump back camel function

g (x) = −2.1x4
1 + 4x2

1 +
1

3
x6
1 − x1x2 + 4x4

2 − 4x2
2

This cost function is minimized in the interior of the box:

−3 ≤ xj ≤ 3,

where j = 1, 2. This problem has two global minimum points, namely,
x∗ = (0.0898, 0.7126) and x∗ = (−0.0898,−0.7126), with g (x∗) = −1.0316.

Probem 3: Rastrigin function

g (x) = − cos (18x1) + x2
1 − cos (18x2) + x2

2
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This cost function is minimized in the interior of the box

−1 ≤ xj ≤ 1,

where j = 1, 2. Rastrigin function achieves its global minimum at x∗ = (0, 0) where
g (x∗) = −2.

Probem 4: Two-dimensional function

g (x) = u2 + v2,

where
u = 1− x1 + c sin (4πx2)− 2x2

and
v = −0.5 sin (2πx1) + x2,

with c = 0.2, c = 0.5, and c = 0.05.
This cost function is minimized in the interior of the box

−10 ≤ xj ≤ 10,

where j = 1, 2. This problem has a global minimum value g (x∗) = 0.

Probem 5: Treccani function

g (x) = 4x2
1 + 4x3

1 + x4
1 + x2

2

This cost function is minimized in the interior of the box:

−3 ≤ xj ≤ 3,

where j = 1, 2. This problem has a global minimum value g (x∗) = 0.

Probem 6: Shubert function
g (x) = u.v,

where

u =

5∑
i=1

i cos [(i+ 1)x1 + i]

and

v =

5∑
i=1

i cos [(i+ 1)x2 + i].

This cost function is minimized in the interior of the box

0 ≤ xj ≤ 10,
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where j = 1, 2. This global optimization problem has 760 local minimum points
where the global minimum value is g (x∗) = −186.7309.

Probem 7: n-Dimensional function

g (x) =
π

n
(u+ v + w) ,

with
u = 10sin2πx1,

v =
n−1∑
i=1

(xi − 1)
2 (

1 + 10sin2πxi+1

)
,

and
w = (xn − 1)

2
.

This cost function is minimized in the interior of the box

−10 ≤ xj ≤ 10,

where j = 1, 2, . . . , n. This cost functions attain its global minimum value, which
is g (x∗) = 0, at x∗ = (1, . . . , 1).

Probem 8: n-Dimensional Rastrigin function

g (x) = 10n+
n∑

i=1

[
x2
i − 10 cos (2πxi)

]
.

This cost function is minimized in the interior of the box

−5.12 ≤ xj ≤ 5.12,

where j = 1, 2, ..., n. This function achieves its global minimum point at
x∗ = (0, . . . , 0), g (x∗) = 0.

Problems 1–8 will be solved by the Poly-ffm algorithm. The results are displayed
in Tables 1–11. In the tables, t indicates the number of local minimum points of
g(x) in χ obtained by the Poly-ffm algorithm. The last t indicates the global local
minimum point. For t = 1, x0

1 is the initial point to execute the Poly-ffm algorithm,
and for (t = 2, 3, . . .), x0

t is the local minimum point of the proposed filled function.
Tables 1–11 illustrate some of the results obtained by the Poly-ffm algorithm.

The findings indicate that the proposed filled function is reliable to solve uncon-
strained global optimization problems. Comparison should be performed to examine
the competitiveness of the Poly-ffm algorithm. The accuracy of the global minimum
value of the cost function should be considered in the comparison stage. The recent
filled function algorithm offered by [13] (we call it the ffm algorithm) was selected.
The comparison is given as follows.
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Table 1: Results of Problem 1.

t x0t x∗t g(x∗t )

1 (1.8883, 2.4348) (1.7476, 0.8738) 0.2986

2 (−0.3211,−0.3920) (0.0060e− 11,−0.2869e− 11) 8.4103e-24

Table 2: Results of Problem 2.

t x0t x∗t g(x∗t )

1 (−2.3651, 1.5669) (−1.6071, 0.5687) 2.1043

2 (0.2332,−0.7941) (−0.0898,−0.7127) -1.0316

Table 3: Results of Problem 3.

t x0t x∗t g(x∗t )

1 (0.3897,−0.3658) (0.3469,−0.3469) -1.7578

2 (0.3469, 0.0038) (0.3469,−0.0000) -1.8789

3 (−0.0038, 0.0000) (−0.1428e− 18,−0.0157e− 18) -2

Table 4: Results of Problem 4, with c = 0.2.

t x0t x∗t g(x∗t )

1 (7.5774,−8.2346) (8.7341,−3.3355) 8.8414

2 (0.0756, 0.5876) (1.0175, 0.0548) 1.7660e-17

Table 5: Results of Problem 4, with c = 0.5.

t x0t x∗t g(x∗t )

1 (7.6552,−6.5510) (7.8000,−6.5850) 72.5124

2 (−3.8865, 0.4091) (1.0000,−0.0000) 1.4348e-19
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Table 6: Results of Problem 5.

t x0t x∗t g(x∗t )

1 (1.1690,−1.0974) (0.0038e− 08, 0.1341e− 08) 1.8033e-18

Table 7: Results of Problem 6.

t x0t x∗t g(x∗t )

1 (6.1165,−3.4712) (6.6174,−2.5109) -13.8031

2 (6.0535,−3.0302) (6.0878,−3.0032) -30.7808

3 (4.8338,−1.9942) (4.8581,−2.0072) -79.4109

4 (5.5216,−1.3918) (5.4829,−1.4251) -186.7309

Table 8: Results of Problem 7 with n = 2.

t x0t x∗t g(x∗t )

1 (5.3103, 5.9040) (4.9594, 5.9968) 64.1238

2 (4.9594, 0.9967) (4.9594, 1.0000) 24.8793

3 (0.9587, 1.0000) (1.0000, 1.0000) 8.2195e-16

Table 9: Results of Problem 7 with n = 3.

t x0t x∗t g(x∗t )

1 (−2.4363, 4.0868, 4.5903) (−1.9697, 2.9977, 4.9899) 30.2267

2 (1.0135,−0.7409, 4.9867) (1.0000, 1.0000, 1.0000) 6.7045e-20

Table 10: Results of Problem 8 with n = 2.

t x0t x∗t g(x∗t )

1 (1.5648, 2.0799) (1.9899, 0.9950) 4.9748

2 (−0.0120,−0.0060) (−0.2408e− 10, 0.5000e− 10) 0
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Table 11: Results of Problem 8 with n = 3.

t x0t x∗t g(x∗t )

1 (−0.6573,−2.3235, 2.5430) (−1.9899, 0.0000, 2.9849) 12.9344

2 (0.0125, 0.0000, 2.9849) (−0.0000, 0.0000, 2.9849) 8.9546

3 (0.0000, 0.0000,−0.0167) (0.0000, 0.0000, 0.2489e− 09) 0

Table 12: Comparison of the results.

Problem Poly-ffm algorithm ffm algorithm

g (x∗) g (x∗)

1 8.4103e-24 1.3537e-15

4 (c = 0.2) 1.7660e-17 6.4583e-16

4 (c = 0.5) 1.4348e-19 2.3665e-15

5 1.8033e-18 2.3139e-16

7 (n = 2) 8.2195e-16 1.4720e-14

7 (n = 3) 6.7045e-20 5.7060e-14
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From Table 12, the Poly-ffm algorithm yields more accurate results than the
algorithm given in [13].

6. Conclusion

This paper proposed a general form of polynomial-filled functions, where nei-
ther exponential nor logarithmic functions are involved. These filled functions were
employed in the global optimization algorithm called Poly-ffm algorithm. Eights
cost functions, which are commonly used as test functions to examine the effective-
ness of an algorithm, were solved by the Poly-ffm algorithm. The numerical data
yielded from the experimental computation showed that our study successfully ob-
tained the global minimum values of the given cost functions. Further, comparison
was performed to reveal the accuracy of the global minimum value obtained by the
Poly-ffm algorithm with another typical filled function algorithm. The comparison
results revealed the that global minimum values yielded by Poly-ffm algorithm were
more accurate.
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