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Abstract. In this article, we investigate the growth of meromorphic solutions of

a(z)(
△cη

η
)2 + (b2(z)η

2(z) + b1(z)η(z) + b0(z))
△cη

η

= d4(z)η
4(z) + d3(z)η

3(z) + d2(z)η
2(z) + d1(z)η(z) + d0(z),

where a(z), bi(z) for i = 0, 1, 2 and dj(z) for j = 0, ..., 4 are given functions, △cη =

η(z + c)− η(z) with c ∈ C\{0}. In particular, when the a(z), the bi(z) and the dj(z) are

polynomials, and d4(z) ≡ 0, we shall show that if η(z) is a transcendental entire solution of

finite order, and either deg a(z) ̸= deg d0(z)+1, or, deg a(z) = deg d0(z)+1 and ρ(η) ̸= 1
2
,

then ρ(η) ≥ 1.

1. Introduction and Main Results

We begin by discussing the case of differential equations, and then move on
to difference equations. Concerning the case of first-order differential equations,
Malmquist [13] showed a century ago that the only equation of the form
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η′ = R(z, η),

where R is rational in both arguments, that can have transcendental meromorphic
solutions, is the Riccati equation:

η′ = a0(z) + a1(z)η + a2(z)η
2.

In 1954, Wittich [15] obtained the result that if the coefficients aj(z) are rational
functions, then all meromorphic solutions of the Riccati equation are of finite order.

We consider a more general case of the following first-order algebraic differential
equation

(1.1) C(z, η)(η′)2 +B(z, η)η′ +A(z, η) = 0,

where C(z, η) ̸≡ 0, B(z, η) and A(z, η) are polynomials in z and η. In 1980, Stein-
metz [14] showed that if (1.1) has a transcendental meromorphic solution, then the
equation (1.1) can be reduced to the form

(1.2)
a(z)η′2 + (b2(z)η

2 + b1(z)η + b0(z))η
′

= d4(z)η
4(z) + d3(z)η

3 + d2(z)η
2 + d1(z)η + d0(z).

where a(z), bi(z) for i = 0, 1, 2 and dj(z) for j = 0, ..., 4 are polynomials.
In this paper, we adopt the standard notation of Nevanlinna theory, as found

in [7, 16]. Moreover, the forward difference △cη is defined as △cη = η(z + c) −
η(z). In recent years, there has been tremendous interest in developing the value
distribution of meromorphic functions with respect to a difference analogue, see
[3, 4]. In 2018, Ishizaki and Korhonen [8] investigated meromorphic solutions of a
difference equation of the form

△η(z)2 = A(z)(η(z)η(z + 1)−B(z)).

They proved that the above difference equation possesses a continuous limit to the
difference equation

(η′)2 = A(z)(η2 − 1),

which extends to solutions in certain cases.
For a more general case, next let us consider the difference analogue of (1.2). It

is interesting to consider the nature of a meromorphic solution η of

(1.3)
a(z)

(
△cη

η

)2

+ (b2(z)η
2(z) + b1(z)η(z) + b0(z))

△cη

η

= d4(z)η
4(z) + d3(z)η

3(z) + d2(z)η
2(z) + d1(z)η(z) + d0(z).
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Our first theorem is about the growth of meromorphic solutions of (1.3).

Theorem 1.1. Let c ∈ C\{0}, let T (r, a(z)) = S(r, η), let T (r, bi(z)) = S(r, η) for
i = 0, 1, 2, let T (r, dj(z)) = S(r, η) for j = 0, · · · , 4 and let d4(z) ̸≡ 0. If η(z) is a
transcendental meromorphic solution of (1.3), then ρ(η) = ∞.

Here ρ(η) denotes the order of growth of the meromorphic function η(z). In what
follows λ(η) and λ( 1η ) denote the exponents of convergence of the zeros and poles

of η(z), respectively. While the above result was about the case d4(z) ̸≡ 0, the
following is about the case d4(z) ≡ 0. Indeed, taking d4(z) ≡ 0, (1.3) becomes

a(z)η′2 + (b2(z)η
2 + b1(z)η + b0(z))η

′

= d4(z)η
4(z) + d3(z)η

3 + d2(z)η
2 + d1(z)η + d0(z)(1.4)

Using the method from Liao and Yang [11], we obtain

Theorem 1.2. Let c ∈ C \ {0}, and let a(z), bi(z) for i = 0, 1, 2), and dj(z) for
j = 0, 1, 2, 3 be polynomials. If η(z) is a finite order transcendental entire solution
of (1.4), and either deg a(z) ̸= deg d0(z) + 1, or, deg a(z) = deg d0(z) + 1 and
ρ(η) ̸= 1

2 , then
ρ(η) ≥ 1.

2. Proof of Theorem 1.1

Let cj , j = 1, · · · , n, be a finite collection of complex numbers. Then a difference
polynomial in η(z) is a function which is polynomial in η(z + cj) for j = 1, · · · , n,
with meromorphic coefficients aλ(z) such that T (r, aλ) = S(r, η) for all λ. As for
difference counterparts of the Clunie Lemma [1], see [5, Corollary 3.3]. The follow-
ing lemma is a more general version. The following lemma due to Laine and Yang
[9] is an analogue of a result due to A. Z. Mohon’ko and V. D. Mohon’ko [12] on
differential equations. We start by recalling some lemmas.

Lemma 2.1 [9] Let η be a transcendental meromorphic solution of finite order
of a difference equation of the form

(2.1) U(z, η)P (z, η) = Q(z, η),

where U(z, η), P (z, η), and Q(z, η) are difference polynomials such that the total
degree degU(z, η) = n in η(z) and its shifts, and degQ(z, η) ≤ n. Moreover, we
assume that U(z, η) contains just one term of maximal total degree in η(z) and its
shifts. Then

m(r, P (z, η)) = S(r, η).

We need one more lemma from [6]. We say that η has more than S(r, η) poles of a
certain type, if the integrated counting function of these poles is not of type S(r, η).
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We use the notation D(z0, r) to denote an open disc of radius r centered at z0 ∈ C.
Also, ∞k denotes a pole of η with multiplicity k. Similarly, 0k and a+ 0k denote a
zero and a-point of η, respectively, with the multiplicity k.

Lemma 2.2 [6] Let η be a meromorphic function having more than S(r, η) poles,
and let as, s = 1, · · · , n, be small meromorphic functions with respect to η. Denote
by mj the maximum order of zeros and poles of the functions as at zj . Then for
any ε > 0, there are at most S(r, η) points zj such that q

η(zj) = ∞kj ,

where mj ≥ εkj .

Proof of Theorem 1.1. Let η be a meromorphic solution of (1.3). We assume
that ρ(η) = ρ < ∞. (1.3) can be written as follows

(2.1) d4(z)η
6(z) = Q(z, η),

where Q(z, η) = a(z)(△cη)
2 +(b2(z)η

2(z)+ b1(z)η(z)+ b0(z))△c ηη− d3(z)η
5(z)−

d2(z)η
4(z)− d1(z)η

3(z)− d0(z)η
2(z). Since the total degree of Q(z, η) as a polyno-

mial in η(z) and its shifts, degQ(z, η) ≤ 5, by Lemma 2.1 and (2.1), we have

m(r, η) = S(r, η).

So, η has more than S(r, η) poles, counting multiplicities. Using zj to denote points
in the pole sequence. By Lemma 2.2, we obtain that there exist more than S(r, η)
points such that η(zj) = ∞kj , where εkj > mj . Here mj refers to the coefficients
a(z), bi(z)(i = 0, 1, 2), dj(z)(j = 0, 1, 2, 3). Denoting the sequence of such poles by
z1,j , we take this sequence as our starting point. For ε < 1

8 , (1.3) implies that
η(z1,j + c) = ∞k2,j , where k2,j ≥ (2 − ε)k1,j . Lemma 2.2 implies that η has more
than S(r, η) such points z2,j such that η(z2,j) = ∞k2,j , where εk2,j > m2,j . Then
we only pick one of these points and denote it by z2,j . Continuing to the next phase.
By (1.3), we deduce that z3,j := z2,j + c is a pole of η of multiplicity k3,j , where

k3,j ≥ (2− ε)k2,j ≥ (2− ε)2k1,j .

Following the steps above, we can find a sequence zn of poles of η, the multiplicity
of which is kn, and kn ≥ (2− ε)n−1k1 ≥ (2− ε)n−1.
By a simple geometric observation, we have

zn ∈ D(z1, (n− 1)|c|) ⊂ D(0, |z1|+ (n− 1)|c|) = D(0, rn).

As n → ∞, we have rn ≤ 2(n− 1)|c|. So,

n(rn, f) ≥ (2− ε)n−1 >
(15
8

)n−1

.
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Hence, we have λ(η) = ∞, a contradiction. So ρ(η) = ∞.

3. Proof of Theorem 1.2

Lemma 3.1 [2] Let η be a transcendental entire function of order ρ(η) = ρ < 1, let
0 < ε < 1

8 and z be such that |z| = r, where

|η(z)| > M(r, η)(ν(r, η))−
1
8+ε

holds. Then for each positive integer k, there exists a set E ⊂ (1,∞) that has finite
logarithmic measure, such that for all r ̸∈ E ∪ [0, 1],

△cη

η
= c

ν(r, η)

z
(1 + o(1)).

Lemma 3.2 [10] Suppose that η(z) is a transcendental entire function of finite or-
der ρ(η) = ρ < ∞, and that a set Er ⊂ R+ has a finite logarithmic measure. Then,
there exists a sequence of positive numbers rk satisfying rk ̸∈ Er and rk → ∞ such
that for given ε > 0, as rk sufficiently lager, we have rρ−ε

k < ν(rk, η) < rρ+ε
k and

exp rρ−ε
k < M(rk, η) < exp rρ+ε

k .

Proof of Theorem 1.2. Suppose that η(z) is a transcendental entire function.
Suppose, contrary to the assertion, that ρ(η) = ρ < 1. If d3(z) ̸≡ 0, then we can
write (1.4) in this form

(4.1) d3(z) =
a(z)

η3

(
△cη

η

)2

+
b2(z)

η

△cη

η
+

b1(z)

η2
△cη

η

+
b0(z)

η3
△cη

η
− d2(z)

η
− d1(z)

η2
− d0(z)

η3
.

By Lemma 3.1, we know that there exists a set H ⊂ (1,∞) of finite logarithmic
measure, such that

(4.2)
△cη

η
= c

ν(r, η)

z
(1 + o(1)), |z| = r ̸∈ H,

where z satisfy |z| = r and |η(z)| = M(r, η), ν(r, η) is the central index of η(z).
By Lemma 3.2, we see that there exist some infinite sequence of points zk such that
|η(zk)| = M(rk, η), and such that for any given ε(0 < ε < 1−ρ

2 ), as rk → ∞, and
|zk| = rk ̸∈ H1 ∪ H ∪ [0, 1] ,where H1 ⊂ (1,∞) is a subset with finite logarithmic
measure, we have

(4.3)
ν(rk, η)

rk
< rρ+ε−1

k → 0.
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Thus, by (4.1)-(4.3), we deduce that as zk satisfy |η(zk)| = M(rk, η), |zk| = rk ̸∈
H1 ∪H ∪ [0, 1], rk → ∞

(4.4) |d3(zk)| ≤ | a(zk)

M(rk, η)3
(
△cη

η
)2|+ | b2(zk)

M(rk, η)

△cη

η
|

+ | b1(zk)

(M(rk, η)2)

△cη

η
|+ | b0(zk)

M(rk, η)3
△cη

η
|

+ | d2(zk)

M(rk, η)
|+ | d1(zk)

M(rk, η)2
|+ | d0(zk)

M(rk, η)3
|

= | a(zk)

M(rk, η)3
||(cν(rk, η)

rk
(1 + o(1)))2|

+ | b2(zk)

M(rk, η)
||cν(rk, η)

rk
(1 + o(1))|

+ | b1(zk)

(M(rk, η))2
||cν(rk, η)

rk
(1 + o(1))|

+ | b0(zk)

M(rk, η)3
||cν(rk, η)

rk
(1 + o(1))|

+ | d2(zk)

M(rk, η)
|+ | d1(zk)

M(rk, η)2
|+ | d0(zk)

M(rk, η)3
| → 0.

This is impossible. Hence d3(z) ≡ 0. Now we may write (1.4) as follows

(4.5) d2(z)− b2(z)
△cη

η
=

a(z)

η2
(
△cη

η
)2 +

b1(z)

η

△cη

η
+

b0(z)

η2
△cη

η
− d1(z)

η
− d0(z)

η2
.

By (4.2), (4.3), and (4.5), we know that

(4.6) ||d2(zk)| − |b2(zk)c
ν(rk, η)

rk
(1 + o(1))||

≤ |d2(zk)− b2(zk)
△cη

η
|

= |a(zk)
η2

(
△cη

η
)2 +

b1(zk)

η

△cη

η
+

b0(zk)

η2
△cη

η
− d1(zk)

η
− d0(zk)

η2
|

= | a(zk)

M(rk, η)2
||(cν(rk, η)

rk
(1 + o(1)))2|

+ | b1(zk)

M(rk, η)
||cν(rk, η)

rk
(1 + o(1))|

+ | b0(zk)

M(rk, η)2
||cν(rk, η)

rk
(1 + o(1))|

+ | d1(zk)

M(rk, η)
|+ | d0(zk)

M(rk, η)2
| → 0.



On the Growth of Transcendental Meromorphic Solutions 191

We divide the proof into the following two cases

Case 1. If b2(z) ≡ 0, then (4.6) implies that d2(z) ≡ 0, hence (1.4) can be written
as following

(4.7) a(z)

(
△cη

η

)2

+ (b1(z)η(z) + b0(z))
△cη

η
= d1(z)η(z) + d0(z).

By computing (4.7), we have

(4.8) ||d1(z)| − |b1(z)
△cη

η
||

≤ |d1(z)− b1(z)
△cη

η
|

= |a(z)
η

(
△cη

η
)2 +

b0(z)

η

△cη

η
− d0(z)

η
|

≤ |a(z)
η

(
△cη

η
)2|+ |b0(z)

η

△cη

η
|+ |d0(z)

η
|.

By (4.1)-(4.3) and (4.8), we obtain that as zk satisfy |η(zk)| = M(rk, η), |zk| =
rk ̸∈ H1 ∪H ∪ [0, 1], rk → ∞

(4.9) ||d1(zk)| − |b1(zk)c
ν(rk, η)

rk
(1 + o(1))||

≤ | a(zk)

M(rk, η)
(c
ν(rk, η)

rk
(1 + o(1)))2|

+ | b0(zk)

M(rk, η)
c
ν(rk, η)

rk
(1 + o(1))|

+ | d0(zk)

M(rk, η)
| → 0.

If b1(z) ̸≡ 0, then by (4.9),

(4.10)
||d1(zk)| − |b1(zk)cν(rk,η)rk

(1 + o(1))||
b1(zk)

→ 0.

(4.3) and (4.10) imply that

(4.11)
d1(zk)

b1(zk)
→ 0,

as k → ∞ . Since d1(z) and b1(z) are polynomials, we obtain that by (4.11)

(4.12)
zkd1(zk)

b1(zk)
→ q,
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as k → ∞, and q is a finite constant. Suppose that d1(z) ̸≡ 0. Then we deduce that
from (4.10) and (4.12)

|q| = lim
k→∞

|zkd1(zk)
b1(zk)

| = |c| lim
k→∞

ν(rk, η)(1 + o(1)) = ∞.

This is impossible. Hence d1(z) ≡ 0. (1.4) can be reduced into

(4.13) a(z)(
△cη

η
)2 + (b1(z)η(z) + b0(z))

△cη

η
= d0(z),

By the above assumption, we know b1(z) ̸≡ 0, then (4.13) implies that

(4.14) | △c η|

= |d0(zk)
b1(zk)

−
a(zk)(

△cη
η )2

b1(zk)
−

b0(zk)
△cη
η

b1(zk)
|

≤ |d0(zk)
b1(zk)

|+ |
a(zk)(

△cη
η )2

b1(zk)
|+ |

b0(zk)
△cη
η

b1(zk)
|

≤ MrNk .

where M and N are some finite constants. On the other hand, we know that

(4.15) | △cη

MrNk
| = |c|ν(rk, η)(1 + o(1))M(rk, η)

|M |rN+1
k

→ ∞,

as k → ∞, a contradiction. Hence b1(z) ≡ 0. By (4.9), we also get d1(z) ≡ 0.
Hence, we can write (1.4) as follows

(4.16) a(z)(
△cη

η
)2 + b0(z)

△cη

η
= d0(z).

We assume that a(z) ̸≡ 0, next we consider the following two subcases.
Subcase I. deg b0(z) ≥ deg a(z), we have by (4.16), (4.2) and (4.3),

(4.17) |lb0(zk)
ν(rk, η)

rk
(1 + o(1))| = |d0(zk)|

where l is a finite nonzero constant. So

(4.18) lim
k→∞

|d0(zk)
b0(zk)

| = lim
k→∞

|l|ν(rk, η)
rk

(1 + o(1)) = 0

(4.18) implies that

(4.19) lim
k→∞

zkd0(zk)

b0(zk)
→ l1,
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where l1 is some finite constant. By (4.19) and (4.17), as k → ∞, we obtain

ν(rk, η) ≤ |d0(zk)
b0(zk)

rk| → l1.

We can get a contradiction, since ν(rk, η) → ∞, as k → ∞.
Subcase 2. deg b0(z) < deg a(z), we have by (4.16), (4.2) and (4.3),

(4.20) |d0(zk)
a(zk)

| ≤ (c
ν(rk, η)

rk
)2(1 + o(1))|+ |b0(zk)

a(zk)
c
ν(rk, η)

rk
(1 + o(1))| → 0,

as k → ∞. We assume that d0(z) ̸≡ 0. If deg a(z) = deg b0(z) + 1, then as k → ∞

(4.21)
rkd0(zk)

a(zk)
= l2,

rkb0(zk)

a(zk)
→ l3

where l2 is a finite nonzero constant, and l2 is a finite constant. By Lemma 3.2, we
have

(4.22) rρ(η)−ε
n < ν(rn, η) < rρ(η)+ε

n .

If ρ(η) < 1
2 , then by (4.16), (4.21) and (4.22), for any given ε(0 < ε < 1−2ρ

2 ), we
have

|l2| = |rkd0(zk)
a(zk)

| ≤ |ν(rk, η)
2

rk
|+ |ν(rk, η)

rk

rkb0(zk)

a(zk)
| ≤ r2ρ+2ε−1

k + |l3|rρ+ε−1
k → 0,

a contradiction. If ρ(η) > 1
2 , then by (4.16), (4.21) and (4.22), for any given

ε(0 < ε < 1−2ρ
2 ), we have

r2ρ−1−ε
k ≤ | (ν(rk, η)

2)

rk
| ≤ | (ν(rk, η))

rk
||rkb0(zk)

a(zk)
|+ |rkd0(zk)

a(zk)
| ≤ l4,

where l4 is some finite constant. This is impossible, since r2ρ−1−ε
k → ∞, as k → ∞.

If deg a(z) > deg d0(z) + 1, as k → ∞, we have

(4.23)
rkb0(zk)

a(zk)
→ l3,

r2kd0(zk)

a(zk)
→ l5,

where l5 are some finite constants. By (4.23) and (4.16), as k → ∞, we have

ν(rk, η) ≤ |rkb0(zk)
a(zk)

|+ |r
2
kd0(zk)

a(zk)

1

ν(rk, η)
| → l6,

where l6 is some finite constant, we can get a contradiction, since ν(rk, η) → ∞. So
d0(z) ≡ 0. By (4.16), we have

ν(rk, η) ≤ |rkb0(zk)
a(zk)

| → l3,
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a contradiction.
By Subcase 1 and Subcase 2, we have a(z) ≡ 0. So (1.4) can be reduced into

(4.24) b0(z)
△cη

η
= d0(z)

Together (4.24) and (4.2), we obtain

(4.25) b0(zk)c
ν(rk, η)

rk
= d0(zk).

(4.25) implies that either limk→∞ ν(rk, η) = l7, where l7 is a finite constant, or
ν(rk, η) ≥ l8r

n
k , where l8 is a finite nonzero constant, and n is a positive integer.

This is a contradiction.

Case 2. If b2(z) ̸≡ 0, then by (4.6)

(4.26)
||d2(zk)| − |b2(zk)cν(rk,η)rk

(1 + o(1))||
b2(zk)

→ 0.

By (4.26), we have

(4.27)
d2(zk)

b2(zk)
→ 0,

as k → ∞. Since d2(z) and b2(z) are polynomials, we get by (4.27)

(4.28)
zkd2(zk)

b2(zk)
→ l9,

as k → ∞, and l9 is a finite constant. Suppose that d2(z) ̸≡ 0. Then we deduce
that from (4.28)

(4.29) l9 = lim
k→∞

|zkd2(zk)
b2(zk)

| = |c| lim
k→∞

ν(rk, η)(1 + o(1)) = ∞.

This is impossible, since l9 is a finite constant. Hence d2(z) ≡ 0. (1.4) can be
reduced into

| △c η| = |d1(zk)
b2(zk)

+
d0(zk)

b2(zk)

1

η(z)
−

b1(zk)
△cη
η

b2(zk)
−

a(zk)(
△cη
η )2

b2(zk)

1

η
−

b0(zk)
△cη
η

b2(zk)

1

η
|

≤ |d1(zk)
b2(zk)

|+ |d0(zk)
b2(zk)

1

η(z)
|+ |

b1(zk)(
△cη
η )2

b2(zk)
|+ |

a(zk)(
△cη
η )2

b2(zk)

1

η
|+ |

b0(zk)
△cη
η

b2(zk)

1

η
|

≤ l10r
l11

k
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where l10 and l11 are some finite constants. On the other hand, we know that

(4.30)
△cη

l10r
l11
k

= |c|ν(rk, η)(1 + o(1))M(rk, η)

l10r
l11+1
k

→ ∞,

as k → ∞. This is a contradiction, △cη

l10r
l11
k

< 1

By Case 1 and Case 2, we know ρ(η) ≥ 1.
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